結果
問題 | No.622 点と三角柱の内外判定 |
ユーザー | T101010101 |
提出日時 | 2024-04-29 18:23:06 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 33,059 bytes |
コンパイル時間 | 7,304 ms |
コンパイル使用メモリ | 314,896 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-19 00:26:24 |
合計ジャッジ時間 | 8,890 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 3 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 3 ms
5,248 KB |
testcase_10 | AC | 3 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 2 ms
5,248 KB |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | AC | 2 ms
5,248 KB |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
コンパイルメッセージ
main.cpp: In function 'll round2(ll, ll)': main.cpp:199:9: warning: 'z' may be used uninitialized [-Wmaybe-uninitialized] 199 | int z = z / y; | ^ main.cpp:199:9: note: 'z' was declared here 199 | int z = z / y; | ^
ソースコード
#pragma region Macros #pragma GCC optimize("O3,unroll-loops") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,fma,abm,mmx,avx,avx2") #include <bits/extc++.h> // #include <atcoder/all> // using namespace atcoder; using namespace std; using namespace __gnu_pbds; // #include <boost/multiprecision/cpp_dec_float.hpp> // #include <boost/multiprecision/cpp_int.hpp> // namespace mp = boost::multiprecision; // using Bint = mp::cpp_int; // using Bdouble = mp::number<mp::cpp_dec_float<256>>; // Bdouble Beps = 0.00000000000000000000000000000001; // 1e-32 // const bool equals(Bdouble a, Bdouble b) { return mp::fabs(a - b) < Beps; } #define pb emplace_back #define int ll #define endl '\n' // #define unordered_map<int, int> gp_hash_table<int, int, custom_hash> #define sqrt __builtin_sqrtl #define cbrt __builtin_cbrtl #define hypot __builtin_hypotl #define next asdnext #define prev asdprev using ll = long long; using ld = long double; const ld PI = acosl(-1); const int INF = 1 << 30; const ll INFL = 1LL << 61; // const int MOD = 998244353; const int MOD = 1000000007; const ld EPS = 1e-10; const bool equals(ld a, ld b) { return fabs((a) - (b)) < EPS; } const vector<int> dx = {0, 1, 0, -1, 1, 1, -1, -1}; // → ↓ ← ↑ ↘ ↙ ↖ ↗ const vector<int> dy = {1, 0, -1, 0, 1, -1, -1, 1}; struct Edge { int from, to, cost; Edge() : from(-1), to(-1), cost(-1) {} Edge(int to, int cost) : to(to), cost(cost) {} Edge(int from, int to, int cost) : from(from), to(to), cost(cost) {} bool operator ==(const Edge& e) { return this->from == e.from && this->to == e.to && this->cost == e.cost; } bool operator !=(const Edge& e) { return this->from != e.from or this->to != e.to or this->cost != e.cost; } }; chrono::system_clock::time_point start; __attribute__((constructor)) void constructor() { ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(10); start = chrono::system_clock::now(); } random_device seed_gen; mt19937_64 rng(seed_gen()); uniform_int_distribution<int> dist_x(0, 1e9); struct RNG { unsigned Int(unsigned l, unsigned r) { return dist_x(rng) % (r - l + 1) + l; } ld Double() { return ld(dist_x(rng)) / 1e9; } } rnd; using i64 = ll; // using i64 = uint64_t; // bit演算, x==0の場合は例外処理した方がよさそう. 区間は [l, r) i64 lrmask(i64 l, i64 r) { return (1LL << r) - (1LL << l); } i64 sub_bit(i64 x, i64 l, i64 r) { i64 b = x & ((1LL << r) - (1LL << l)); return b >> l; } // r溢れ可 i64 bit_width(i64 x) { return 64 - __builtin_clzll(x) + (x == 0); } i64 popcount(i64 x) { return __builtin_popcountll(x); } i64 popcount(i64 x, i64 l, i64 r) { return __builtin_popcountll(sub_bit(x, l, r)); } i64 unpopcount(i64 x) { return bit_width(x) - __builtin_popcountll(x); } i64 unpopcount(i64 x, i64 l, i64 r) { return r - l - __builtin_popcountll(sub_bit(x, l, r)); } bool is_pow2(i64 x) { return __builtin_popcountll(x) == 1; } i64 top_bit(i64 x) { return 63 - __builtin_clzll(x);} // 2^kの位 (x > 0) i64 bot_bit(i64 x) { return __builtin_ctz(x);} // 2^kの位 (x > 0) // i64 next_bit(i64 x, i64 k) { return 0; } // i64 prev_bit(i64 x, i64 k) { return 0; } // i64 kth_bit(i64 x, i64 k) { return 0; } i64 MSB(i64 x) { if (x == 0) return 0; return 1LL << (63 - __builtin_clzll(x)); } // mask i64 LSB(i64 x) { return (x & -x); } // mask i64 countl_zero(i64 x) { return __builtin_clzll(x); } i64 countl_one(i64 x) { i64 ret = 0, k = 63 - __builtin_clzll(x); while (k != -1 && (x & (1LL << k))) { k--; ret++; } return ret; } i64 countr_zero(i64 x) { return __builtin_ctzll(x); } // x==0のとき64が返ることに注意 i64 countr_one(i64 x) { i64 ret = 0; while (x & 1) { x >>= 1; ret++; } return ret; } i64 floor_log2(i64 x) { if (x == 0) return 0; return 63 - __builtin_clzll(x); } i64 bit_floor(i64 x) { if (x == 0) return 0; return 1LL << (63 - __builtin_clzll(x)); } // MSBと同じ i64 ceil_log2(i64 x) { if (x == 0) return 0; return 64 - __builtin_clzll(x - 1); } i64 bit_ceil(i64 x) { if (x == 0) return 0; return 1LL << (64 - __builtin_clzll(x - 1)); } i64 rotl(i64 x, i64 k) { // 有効bit内でrotate. オーバーフロー注意 i64 w = bit_width(x); k %= w; return ((x << k) | (x >> (w - k))) & ((1LL << w) - 1); } // i64 rotl(i64 x, i64 l, i64 m, i64 r) {} i64 rotr(i64 x, i64 k) { i64 w = bit_width(x); k %= w; return ((x >> k) | (x << (w - k))) & ((1LL << w) - 1); } // i64 rotr(i64 x, i64 l, i64 m, i64 r) {} i64 bit_reverse(i64 x) { // 有効bit内で左右反転 i64 r = 0, w = bit_width(x); for (i64 i = 0; i < w; i++) r |= ((x >> i) & 1) << (w - i - 1); return r; } // i64 bit_reverse(i64 x, i64 l, i64 r) { return 0; } bool is_palindrome(i64 x) { return x == bit_reverse(x); } bool is_palindrome(i64 x, i64 l, i64 r) { i64 b = sub_bit(x, l, r); return b == bit_reverse(b); } i64 concat(i64 a, i64 b) { return (a << bit_width(b)) | b; } // オーバーフロー注意 i64 erase(i64 x, i64 l, i64 r) { return x>>r<<l | x&(1LL<<l - 1); } // [l, r) をカット i64 hamming(i64 a, i64 b) { return __builtin_popcountll(a ^ b); } i64 hamming(i64 a, i64 b, i64 l, i64 r) { return __builtin_popcountll(sub_bit(a, l, r) ^ sub_bit(b, l, r)); } i64 compcount(i64 x) { return (__builtin_popcountll(x ^ (x >> 1)) + (x & 1)) / 2; } i64 compcount2(i64 x) { return compcount(x & (x >> 1)); } // 長さ2以上の連結成分の個数 i64 adjacount(i64 x) { return __builtin_popcountll(x & (x >> 1)); } // 隣接する1のペアの個数 i64 next_combination(i64 x) { i64 t = x | (x - 1); return (t + 1) | (((~t & -~t) - 1) >> (__builtin_ctz(x) + 1)); } __int128_t POW(__int128_t x, int n) { __int128_t ret = 1; assert(n >= 0); if (x == 1 or n == 0) ret = 1; else if (x == -1 && n % 2 == 0) ret = 1; else if (x == -1) ret = -1; else if (n % 2 == 0) { assert(x < INFL); ret = POW(x * x, n / 2); } else { assert(x < INFL); ret = x * POW(x, n - 1); } return ret; } int per(int x, int y) { // x = qy + r (0 <= r < y) を満たすq assert(y != 0); if (x >= 0 && y > 0) return x / y; if (x >= 0 && y < 0) return x / y - (x % y < 0); if (x < 0 && y < 0) return x / y + (x % y < 0); return x / y - (x % y < 0); // (x < 0 && y > 0) } int mod(int x, int y) { // x = qy + r (0 <= r < y) を満たすr assert(y != 0); if (x >= 0) return x % y; __int128_t ret = x % y; // (x < 0) ret += (__int128_t)abs(y) * INFL; ret %= abs(y); return ret; } int floor(int x, int y) { // (ld)x / y 以下の最大の整数 assert(y != 0); if (y < 0) x = -x, y = -y; return x >= 0 ? x / y : (x + 1) / y - 1; } int ceil(int x, int y) { // (ld)x / y 以上の最小の整数 assert(y != 0); if (y < 0) x = -x, y = -y; return x > 0 ? (x - 1) / y + 1 : x / y; } int round(int x, int y) { assert(y != 0); return (x * 2 + y) / (y * 2); } int round(int x, int y, int k) { // (ld)(x/y)を10^kの位に関して四捨五入 assert(y != 0); // TODO return INF; } int round2(int x, int y) { // 五捨五超入 // 未verify assert(y != 0); if (y < 0) y = -y, x = -x; int z = z / y; if ((z * 2 + 1) * y <= y * 2) z++; return z; } // int round(ld x, int k) { // xを10^kの位に関して四捨五入 // } // int floor(ld x, int k) { // xを10^kの位に関してflooring // } // int ceil(ld x, int k) { // xを10^kの位に関してceiling // } // int kth(int x, int y, int k) { // x / yの10^kの位の桁 // } int floor(ld x, ld y) { // 誤差対策TODO assert(!equals(y, 0)); return floor(x / y); // floor(x) = ceil(x - 1) という話も } int ceil(ld x, ld y) { // 誤差対策TODO // ceil(p/q) = -floor(-(p/q))らしい assert(!equals(y, 0)); return ceil(x / y); // ceil(x) = floor(x + 1) } int perl(ld x, ld y) { // x = qy + r (0 <= r < y, qは整数) を満たす q // 未verify. 誤差対策TODO. EPS外してもいいかも。 assert(!equals(y, 0)); if (x >= 0 && y > 0) return floor(x / y)+EPS; if (x >= 0 && y < 0) return -floor(x / fabs(y)); if (x < 0 && y < 0) return floor(x / y) + (x - floor(x/y)*y < -EPS); return floor(x / y) - (x - floor(x/y)*y < -EPS); // (x < 0 && y > 0) } ld modl(ld x, ld y) { // x = qy + r (0 <= r < y, qは整数) を満たす r // 未verify. 誤差対策TODO. -0.0が返りうる。 assert(!equals(y, 0)); if (x >= 0) return x - fabs(y)*fabs(per(x, y)); return x - fabs(y)*floor(x, fabs(y)); } int seisuu(ld x) { return (int)x; } // 整数部分. 誤差対策TODO int modf(ld x) { if (x < 0) return ceill(x); else return floorl(x); } // 正なら+EPS, 負なら-EPSしてから、文字列に直して小数点以下を捨てる? int seisuu(int x, int y) { assert(y != 0); return x / y; } int seisuu(ld x, ld y) { // 誤差対策TODO assert(!equals(y, 0)); return (int)(x / y); } template <class T> pair<T, T> max(const pair<T, T> &a, const pair<T, T> &b) { if (a.first > b.first or a.first == b.first && a.second > b.second) return a; return b; } template <class T> pair<T, T> min(const pair<T, T> &a, const pair<T, T> &b) { if (a.first < b.first or a.first == b.first && a.second < b.second) return a; return b; } template <class T> bool chmax(T &a, const T& b) { if (a < b) { a = b; return true; } return false; } template <class T> bool chmin(T &a, const T& b) { if (a > b) { a = b; return true; } return false; } template <class T> T mid(T a, T b, T c) { // 誤差対策TODO return a + b + c - max({a, b, c}) - min({a, b, c}); } template <class T> void Sort(T &a, T &b, bool rev = false) { if (rev == false) { // TODO テンプレート引数 if (a > b) swap(a, b); } else { if (b > a) swap(b, a); } } template <class T> void sort(T &a, T &b, T &c, bool rev = false) { if (rev == false) { if (a > b) swap(a, b); if (a > c) swap(a, c); if (b > c) swap(b, c); } else { if (c > b) swap(c, b); if (c > a) swap(c, a); if (b > a) swap(b, a); } } template <class T> void sort(T &a, T &b, T &c, T &d, bool rev = false) { if (rev == false) { if (a > b) swap(a, b); if (a > c) swap(a, c); if (a > d) swap(a, d); if (b > c) swap(b, c); if (b > d) swap(b, d); if (c > d) swap(c, d); } else { if (d > c) swap(d, c); if (d > b) swap(d, b); if (d > a) swap(d, a); if (c > b) swap(c, b); if (c > a) swap(c, a); if (b > a) swap(b, a); } } struct custom_hash { static uint64_t splitmix64(uint64_t x) { x += 0x9e3779b97f4a7c15; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return x ^ (x >> 31); } size_t operator()(uint64_t x) const { static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count(); return splitmix64(x + FIXED_RANDOM); } }; class Compress { public: int sz = 0; // gp_hash_table<int, int, custom_hash> Z, UZ; unordered_map<int, int> Z; // 元の値 -> 圧縮した値 unordered_map<int, int> UZ; // 圧縮した値 -> 元の値 Compress(const vector<int> &V, int base = 0) { this->sz = base; set<int> s(V.begin(), V.end()); for (int x : s) { this->Z[x] = this->sz; this->UZ[this->sz] = x; this->sz++; } } Compress(const vector<int> &V1, const vector<int> &V2, int base = 0) { this->sz = base; vector<int> V3 = V2; V3.insert(V3.end(), V1.begin(), V1.end()); set<int> s(V3.begin(), V3.end()); for (int x : s) { this->Z[x] = this->sz; this->UZ[this->sz] = x; this->sz++; } } Compress(const vector<int> &V1, const vector<int> &V2, const vector<int> &V3, int base = 0) { this->sz = base; vector<int> V4 = V1; V4.insert(V4.end(), V2.begin(), V2.end()); V4.insert(V4.end(), V3.begin(), V3.end()); set<int> s(V4.begin(), V4.end()); for (int x : s) { this->Z[x] = this->sz; this->UZ[this->sz] = x; this->sz++; } } Compress(const vector<int> &V1, const vector<int> &V2, const vector<int> &V3, const vector<int> &V4, int base = 0) { this->sz = base; vector<int> V5 = V1; V5.insert(V5.end(), V2.begin(), V2.end()); V5.insert(V5.end(), V3.begin(), V3.end()); V5.insert(V5.end(), V4.begin(), V4.end()); set<int> s(V5.begin(), V5.end()); for (int x : s) { this->Z[x] = this->sz; this->UZ[this->sz] = x; this->sz++; } } vector<int> zip(const vector<int> &V) { vector<int> ret = V; for (int i = 0; i < (int)V.size(); i++) { ret[i] = Z[ret[i]]; } return ret; } vector<int> unzip(const vector<int> &V) { vector<int> ret = V; for (int i = 0; i < (int)V.size(); i++) { ret[i] = UZ[ret[i]]; } return ret; } int size() { return sz; } int encode(int x) { return Z[x]; } int decode(int x) { if (UZ.find(x) == UZ.end()) return -1; // xが元の配列に存在しないとき return UZ[x]; } }; class UnionFind { public: UnionFind() = default; UnionFind(int N) : par(N), sz(N, 1) { iota(par.begin(), par.end(), 0); } int root(int x) { if (par[x] == x) return x; return (par[x] = root(par[x])); } bool unite(int x, int y) { int rx = root(x); int ry = root(y); if (rx == ry) return false; if (sz[rx] < sz[ry]) swap(rx, ry); sz[rx] += sz[ry]; par[ry] = rx; return true; } bool issame(int x, int y) { return (root(x) == root(y)); } int size(int x) { return sz[root(x)]; } vector<vector<int>> groups(int N) { vector<vector<int>> G(N); for (int x = 0; x < N; x++) { G[root(x)].push_back(x); } G.erase( remove_if(G.begin(), G.end(), [&](const vector<int>& V) { return V.empty(); }), G.end()); return G; } private: vector<int> par, sz; }; template<typename T> struct BIT { int N; // 要素数 vector<T> bit[2]; // データの格納先 BIT(int N_, int x = 0) { N = N_ + 1; bit[0].assign(N, 0); bit[1].assign(N, 0); if (x != 0) { for (int i = 0; i < N; i++) add(i, x); } } BIT(const vector<int> &A) { N = A.size() + 1; bit[0].assign(N, 0); bit[1].assign(N, 0); for (int i = 0; i < (int)A.size(); i++) add(i, A[i]); } void add_sub(int p, int i, T x) { while (i < N) { bit[p][i] += x; i += (i & -i); } } void add(int l, int r, T x) { add_sub(0, l + 1, -x * l); add_sub(0, r + 1, x * r); add_sub(1, l + 1, x); add_sub(1, r + 1, -x); } void add(int i, T x) { add(i, i + 1, x); } T sum_sub(int p, int i) { T ret = 0; while (i > 0) { ret += bit[p][i]; i -= (i & -i); } return ret; } T sum(int i) { return sum_sub(0, i) + sum_sub(1, i) * i; } T sum(int l, int r) { return sum(r) - sum(l); } T get(int i) { return sum(i, i + 1); } void set(int i, T x) { T s = get(i); add(i, -s + x); } }; template<int mod> class Modint { public: int val = 0; Modint(int x = 0) { while (x < 0) x += mod; val = x % mod; } Modint(const Modint &r) { val = r.val; } Modint operator -() { return Modint(-val); } // 単項 Modint operator +(const Modint &r) { return Modint(*this) += r; } Modint operator +(const int &q) { Modint r(q); return Modint(*this) += r; } Modint operator -(const Modint &r) { return Modint(*this) -= r; } Modint operator -(const int &q) { Modint r(q); return Modint(*this) -= r; } Modint operator *(const Modint &r) { return Modint(*this) *= r; } Modint operator *(const int &q) { Modint r(q); return Modint(*this) *= r; } Modint operator /(const Modint &r) { return Modint(*this) /= r; } Modint operator /(const int &q) { Modint r(q); return Modint(*this) /= r; } Modint& operator ++() { val++; if (val >= mod) val -= mod; return *this; } // 前置 Modint operator ++(signed) { ++*this; return *this; } // 後置 Modint& operator --() { val--; if (val < 0) val += mod; return *this; } Modint operator --(signed) { --*this; return *this; } Modint &operator +=(const Modint &r) { val += r.val; if (val >= mod) val -= mod; return *this; } Modint &operator +=(const int &q) { Modint r(q); val += r.val; if (val >= mod) val -= mod; return *this; } Modint &operator -=(const Modint &r) { if (val < r.val) val += mod; val -= r.val; return *this; } Modint &operator -=(const int &q) { Modint r(q); if (val < r.val) val += mod; val -= r.val; return *this; } Modint &operator *=(const Modint &r) { val = val * r.val % mod; return *this; } Modint &operator *=(const int &q) { Modint r(q); val = val * r.val % mod; return *this; } Modint &operator /=(const Modint &r) { int a = r.val, b = mod, u = 1, v = 0; while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);} val = val * u % mod; if (val < 0) val += mod; return *this; } Modint &operator /=(const int &q) { Modint r(q); int a = r.val, b = mod, u = 1, v = 0; while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);} val = val * u % mod; if (val < 0) val += mod; return *this; } bool operator ==(const Modint& r) { return this -> val == r.val; } bool operator <(const Modint& r) { return this -> val < r.val; } bool operator >(const Modint& r) { return this -> val > r.val; } bool operator !=(const Modint& r) { return this -> val != r.val; } }; using mint = Modint<MOD>; istream &operator >>(istream &is, mint& x) { int t; is >> t; x = t; return (is); } ostream &operator <<(ostream &os, const mint& x) { return os << x.val; } mint modpow(const mint &x, int n) { if (n < 0) return (mint)1 / modpow(x, -n); // 未verify assert(n >= 0); if (n == 0) return 1; mint t = modpow(x, n / 2); t = t * t; if (n & 1) t = t * x; return t; } int modpow(__int128_t x, int n, int mod) { assert(n >= 0 && mod > 0); // TODO: n <= -1 __int128_t ret = 1; while (n > 0) { if (n % 2 == 1) ret = ret * x % mod; x = x * x % mod; n /= 2; } return ret; } int modinv(__int128_t x, int mod) { assert(mod > 0); // assert(x > 0); if (x == 1 or x == 0) return 1; return mod - modinv(mod % x, mod) * (mod / x) % mod; } istream &operator >>(istream &is, __int128_t& x) { string S; is >> S; __int128_t ret = 0; int f = 1; if (S[0] == '-') f = -1; for (int i = 0; i < S.length(); i++) if ('0' <= S[i] && S[i] <= '9') ret = ret * 10 + S[i] - '0'; x = ret * f; return (is); } ostream &operator <<(ostream &os, __int128_t x) { ostream::sentry s(os); if (s) { __uint128_t tmp = x < 0 ? -x : x; char buffer[128]; char *d = end(buffer); do { --d; *d = "0123456789"[tmp % 10]; tmp /= 10; } while (tmp != 0); if (x < 0) { --d; *d = '-'; } int len = end(buffer) - d; if (os.rdbuf()->sputn(d, len) != len) os.setstate(ios_base::badbit); } return os; } __int128_t stoll(string &S) { __int128_t ret = 0; int f = 1; if (S[0] == '-') f = -1; for (int i = 0; i < S.length(); i++) if ('0' <= S[i] && S[i] <= '9') ret = ret * 10 + S[i] - '0'; return ret * f; } __int128_t gcd(__int128_t a, __int128_t b) { return b ? gcd(b, a % b) : a; } __int128_t lcm(__int128_t a, __int128_t b) { return a / gcd(a, b) * b; // lcmが__int128_tに収まる必要あり } string to_string(ld x, int k) { // xの小数第k位までをstring化する assert(k >= 0); stringstream ss; ss << setprecision(k + 2) << x; string s = ss.str(); if (s.find('.') == string::npos) s += '.'; int pos = s.find('.'); for (int i = 0; k >= (int)s.size() - 1 - pos; i++) s += '0'; s.pop_back(); if (s.back() == '.') s.pop_back(); return s; // stringstream ss; // 第k+1位を四捨五入して第k位まで返す // ss << setprecision(k + 1) << x; // string s = ss.str(); // if (s.find('.') == string::npos) s += '.'; // int pos = s.find('.'); // for (int i = 0; k > (int)s.size() - 1 - pos; i++) s += '0'; // if (s.back() == '.') s.pop_back(); // return s; } string to_string(__int128_t x) { string ret = ""; if (x < 0) { ret += "-"; x *= -1; } while (x) { ret += (char)('0' + x % 10); x /= 10; } reverse(ret.begin(), ret.end()); return ret; } string to_string(char c) { string s = ""; s += c; return s; } template<class T> size_t HashCombine(const size_t seed,const T &v) { return seed^(hash<T>()(v)+0x9e3779b9+(seed<<6)+(seed>>2)); } template<class T,class S> struct hash<pair<T,S>>{ size_t operator()(const pair<T,S> &keyval) const noexcept { return HashCombine(hash<T>()(keyval.first), keyval.second); } }; template<class T> struct hash<vector<T>>{ size_t operator()(const vector<T> &keyval) const noexcept { size_t s=0; for (auto&& v: keyval) s=HashCombine(s,v); return s; } }; template<int N> struct HashTupleCore{ template<class Tuple> size_t operator()(const Tuple &keyval) const noexcept{ size_t s=HashTupleCore<N-1>()(keyval); return HashCombine(s,get<N-1>(keyval)); } }; template <> struct HashTupleCore<0>{ template<class Tuple> size_t operator()(const Tuple &keyval) const noexcept{ return 0; } }; template<class... Args> struct hash<tuple<Args...>>{ size_t operator()(const tuple<Args...> &keyval) const noexcept { return HashTupleCore<tuple_size<tuple<Args...>>::value>()(keyval); } }; vector<mint> _fac, _finv, _inv; void COMinit(int N) { _fac.resize(N + 1); _finv.resize(N + 1); _inv.resize(N + 1); _fac[0] = _fac[1] = 1; _finv[0] = _finv[1] = 1; _inv[1] = 1; for (int i = 2; i <= N; i++) { _fac[i] = _fac[i-1] * mint(i); _inv[i] = -_inv[MOD % i] * mint(MOD / i); _finv[i] = _finv[i - 1] * _inv[i]; } } mint FAC(int N) { if (N < 0) return 0; return _fac[N]; } mint COM(int N, int K) { if (N < K) return 0; if (N < 0 or K < 0) return 0; return _fac[N] * _finv[K] * _finv[N - K]; } mint PERM(int N, int K) { if (N < K) return 0; if (N < 0 or K < 0) return 0; return _fac[N] * _finv[N - K]; } mint NHK(int N, int K) { // initのサイズに注意 if (N == 0 && K == 0) return 1; return COM(N + K - 1, K); } #pragma endregion class Point3d { public: double x, y, z; Point3d(double x = 0, double y = 0, double z = 0) : x(x), y(y), z(z) {} Point3d operator+(const Point3d& a) { return Point3d(x + a.x, y + a.y, z + a.z); } Point3d operator-(const Point3d& a) { return Point3d(x - a.x, y - a.y, z - a.z); } Point3d operator*(const double& d) { return Point3d(x * d, y * d, z * d); } Point3d operator/(const double& d) { return Point3d(x / d, y / d, z / d); } bool operator<(const Point3d& p) const { if (!equals(x, p.x)) return x < p.x; if (!equals(y, p.y)) return y < p.y; if (!equals(z, p.z)) return z < p.z; return false; } bool operator==(const Point3d& p) const { return equals(x, p.x) && equals(y, p.y) && equals(z, p.z); } friend istream& operator>>(istream& is, Point3d& p) { is >> p.x >> p.y >> p.z; return is; } friend ostream& operator<<(ostream& os, Point3d& p) { os << p.x << " " << p.y << " " << p.z; return os; } }; int sign(double x) { return x < -EPS ? -1 : x > EPS; } // -1(負)/0/1(正) struct Segment3d { Point3d p[2], d; // pは端点、dは向き Segment3d(Point3d p1 = Point3d(), Point3d p2 = Point3d()) { p[0] = p1, p[1] = p2; d = p[1] - p[0]; } bool operator==(const Segment3d& S) const { return (p[0] == S.p[0] && p[1] == S.p[1]) || (p[0] == S.p[1] && p[1] == S.p[0]); } }; using Line3d = Segment3d; using Vector3d = Point3d; bool is_parallel(Vector3d v1, Vector3d v2) { if (equals(v1.x*v2.y, v1.y*v2.x) && equals(v1.y*v2.z, v1.z*v2.y) && equals(v1.z*v2.x, v1.x*v2.z)) return true; return false; } bool is_orthogonal(Vector3d v1, Vector3d v2) { if (equals(v1.x*v2.x + v1.y*v2.y + v1.z*v2.z, 0)) return true; return false; } bool is_parallel(Line3d &l, Line3d &m) { return is_parallel(l.p[1] - l.p[0], m.p[1] - m.p[0]); } bool is_orthogonal(Line3d &l, Line3d &m) { return is_orthogonal(l.p[1] - l.p[0], m.p[1] - m.p[0]); } ostream& operator<<(ostream& os, const Point3d& p) { return os << "(" << p.x << "," << p.y << "," << p.z << ")"; } ostream& operator<<(ostream& os, const Segment3d& S) { return os << "(" << S.p[0] << "," << S.p[1] << ")"; } double dot(const Point3d& a, const Point3d& b) { return a.x * b.x + a.y * b.y + a.z * b.z; } Vector3d cross(const Point3d& a, const Point3d& b) { return Vector3d(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x); } inline double norm(const Point3d& p) { return p.x * p.x + p.y * p.y + p.z * p.z; } inline double abs(const Point3d& p) { return sqrt(norm(p)); } double rad_to_deg(double r) { return (r * 180.0 / PI); } double deg_to_rad(double d) { return (d * PI / 180.0); } double angle(Point3d a, Point3d b) { double costheta = dot(a, b) / norm(a) / norm(b); return acos(max(-1.0, min(1.0, costheta))); } Point3d rotateccw90(Point3d a) { return Point3d(-a.y, a.x); } Point3d rotatecw90(Point3d a) { return Point3d(a.y, -a.x); } Point3d rotateccw(Point3d a, double t) { return Point3d(a.x * cos(t) - a.y * sin(t), a.x * sin(t) + a.y * cos(t)); } Point3d rotatecw(Point3d a, double t) { return Point3d(a.x * cos(t) + a.y * sin(t), -a.x * sin(t) + a.y * cos(t)); } double distanceLP(Line3d L, Point3d p) { return abs(cross(L.p[1] - L.p[0], p - L.p[0])) / abs(L.p[1] - L.p[0]); } double dist(Point3d p1, Point3d p2) { return sqrt(norm(p1 - p2)); } Point3d project(Segment3d S, Point3d p) { Vector3d base = S.p[1] - S.p[0]; double t = dot(p - S.p[0], base) / norm(base); return S.p[0] + base * t; } Point3d reflect(Segment3d S, Point3d p) { return p + (project(S, p) - p) * 2.0; } bool on_line3d(Line3d L, Point3d p) { return equals(abs(cross(L.p[1] - p, L.p[0] - p)), 0); } bool on_segment3d(Segment3d S, Point3d p) { if (!on_line3d(S, p)) return false; double dist[3] = {abs(S.p[1] - S.p[0]), abs(p - S.p[0]), abs(p - S.p[1])}; return on_line3d(S, p) && equals(dist[0], dist[1] + dist[2]); } double distanceSP(Segment3d S, Point3d p) { Point3d r = project(S, p); if (on_segment3d(S, r)) return abs(p - r); return min(abs(S.p[0] - p), abs(S.p[1] - p)); } class Plane3d { public: Point3d normal_vector; // 法線ベクトル double d; // 平面方程式 normal_vector = (a,b,c), a*x + b*y + c*z + d = 0 Plane3d(Point3d normal_vector = Point3d(), double d = 0) : normal_vector(normal_vector), d(d) {} Plane3d(Vector3d a, Vector3d b, Vector3d c) { Vector3d v1 = b - a; Vector3d v2 = c - a; Vector3d tmp = cross(v1, v2); normal_vector = tmp / abs(tmp); set_d(a); } // From three non-collinear points P,Q,R // Plane3d(Point3d p, Point3d q, Point3d r) : Plane3d((q - p) * (r - p), p) {} // 点pの平面に対する位置(正/負) double side(Point3d p) { return dot(normal_vector, p) - d; } // shift the Plane3d perpendicular to normal_vector by distance dist Plane3d shiftUp(double dist) { return {normal_vector, d + dist * abs(normal_vector)}; } pair<Point3d, Point3d> get_two_points_on_plane() { assert(sign(normal_vector.x) != 0 or sign(normal_vector.y) != 0 or sign(normal_vector.z) != 0); if (sign(normal_vector.x) == 0 && sign(normal_vector.y) == 0) return make_pair(Point3d(1, 0, d/normal_vector.z), Point3d(0, 1, d/normal_vector.z)); if (sign(normal_vector.y) == 0 && sign(normal_vector.z) == 0) return make_pair(Point3d(d/normal_vector.x, 1, 0), Point3d(d/normal_vector.x, 0, 1)); if (sign(normal_vector.z) == 0 && sign(normal_vector.x) == 0) return make_pair(Point3d(1, d/normal_vector.y, 0), Point3d(0, d/normal_vector.y, 1)); if (sign(normal_vector.x) == 0) return make_pair(Point3d(1, d/normal_vector.y, 0), Point3d(0, 0, d/normal_vector.z)); if (sign(normal_vector.y) == 0) return make_pair(Point3d(0, 1, d/normal_vector.z), Point3d(d/normal_vector.x, 0, 0)); if (sign(normal_vector.z) == 0) return make_pair(Point3d(d/normal_vector.x, 0, 1), Point3d(0, d/normal_vector.y, 0)); if (sign(d)!=0) return make_pair(Point3d(d/normal_vector.x, 0, 0), Point3d(0, d/normal_vector.y, 0)); return make_pair(Point3d(normal_vector.y, -normal_vector.x, 0), Point3d(-normal_vector.y, normal_vector.x, 0)); } // 法線ベクトルnormal_vectorと平面上の1点からdを計算する void set_d(Point3d p) { d = dot(normal_vector, p); } // 平面と点pの距離を求める double distanceP(Point3d p) { Point3d a = normal_vector * d; // 平面上の適当な点をつくる return abs(dot(p - a, normal_vector)); } // 平面上でもっとも点pと近い点を求める Point3d projection(Point3d p) { Point3d a = normal_vector * d; return p - (normal_vector * dot(p - a, normal_vector)); } Point3d reflection(Point3d p) { // 未 return p + (projection(p) - p) * 2.; } // 平面と線分が交差するか bool intersectS(Segment3d seg) { Point3d a = normal_vector * d; double res1 = dot(a - seg.p[0], normal_vector); double res2 = dot(a - seg.p[1], normal_vector); if (res1 > res2) swap(res1, res2); if ((equals(res1, 0.0) || res1 < 0) && (equals(res2, 0.0) || res2 > 0)) return true; return false; } // 平面と線分の交点を求める Point3d crosspointS(Segment3d seg) { Point3d a = normal_vector * d; double dot_p0a = fabs(dot(seg.p[0] - a, normal_vector)); double dot_p1a = fabs(dot(seg.p[1] - a, normal_vector)); if (equals(dot_p0a + dot_p1a, 0)) return seg.p[0]; return seg.p[0] + (seg.p[1] - seg.p[0]) * (dot_p0a / (dot_p0a + dot_p1a)); } }; bool is_parallel(Plane3d P, Line3d &L) { return is_orthogonal(P.normal_vector, L.p[1] - L.p[0]); } bool is_orthogonal(Plane3d P, Line3d &L) { return is_parallel(P.normal_vector, L.p[1] - L.p[0]); } bool is_parallel(Plane3d P1, Plane3d P2) { return cross(P1.normal_vector, P2.normal_vector) == Vector3d(0, 0); } bool is_orthogonal(Plane3d P1, Plane3d P2) { return sign(dot(P1.normal_vector, P2.normal_vector)) == 0; } double angle(Plane3d p, Line3d l) { return PI / 2. - acos(min(fabs(dot(p.normal_vector, l.d)) / abs(p.normal_vector) / abs(l.d), 1.0)); } double distPL(Plane3d P, Line3d L) { return is_parallel(P, L) ? P.distanceP(L.p[0]) : 0; } double distPS(Plane3d P, Segment3d S) { Point3d ha = P.projection(S.p[0]), hb = P.projection(S.p[1]); double ipa = dot(S.p[0] - ha, S.p[1] - S.p[0]), ipb = dot(S.p[1] - hb, S.p[0] - S.p[1]); return sign(ipa) < 0 && sign(ipb) < 0 ? 0 : min(P.distanceP(S.p[0]), P.distanceP(S.p[1])); } using P3db = pair<Point3d, bool>; double area(Point3d a, Point3d b, Point3d c) { return abs(cross(b - a, c - a)) / 2.; } double orient_by_normal(Point3d p, Point3d q, Point3d r, Point3d n) { return dot(cross(q - p, r - p), n); } double distance_from_segment_to_point(Point3d a, Point3d b, Point3d c) { if (sign(dot(b - a, c - a)) < 0) return dist(a, c); if (sign(dot(a - b, c - b)) < 0) return dist(b, c); return fabs(abs(cross((b - a) / abs(b - a), c - a))); } double distance_from_triangle_to_point(Point3d a, Point3d b, Point3d c, Point3d d) { Plane3d P(a, b, c); Point3d proj = P.projection(d); double dis = min(distance_from_segment_to_point(a, b, d), min(distance_from_segment_to_point(b, c, d), distance_from_segment_to_point(c, a, d))); int o = sign(orient_by_normal(a, b, proj, P.normal_vector)); int inside = o == sign(orient_by_normal(b, c, proj, P.normal_vector)); inside &= o == sign(orient_by_normal(c, a, proj, P.normal_vector)); if (inside) return abs(d - proj); return dis; } signed main() { Point3d a, b, c, p; cin >> a >> b >> c >> p; Plane3d f(a, b, c); int d = f.distanceP(p); // 平面ABCとの距離 // 三角形ABCとの距離 double mind = distance_from_triangle_to_point(a, b, c, p); if (equals(mind, d)) cout << "YES" << endl; else cout << "NO" << endl; }