結果

問題 No.622 点と三角柱の内外判定
ユーザー T101010101T101010101
提出日時 2024-04-29 18:23:06
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 33,059 bytes
コンパイル時間 7,304 ms
コンパイル使用メモリ 314,896 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-11-19 00:26:24
合計ジャッジ時間 8,890 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 3 ms
5,248 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 3 ms
5,248 KB
testcase_10 AC 3 ms
5,248 KB
testcase_11 AC 2 ms
5,248 KB
testcase_12 AC 2 ms
5,248 KB
testcase_13 AC 2 ms
5,248 KB
testcase_14 AC 2 ms
5,248 KB
testcase_15 AC 2 ms
5,248 KB
testcase_16 AC 2 ms
5,248 KB
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function 'll round2(ll, ll)':
main.cpp:199:9: warning: 'z' may be used uninitialized [-Wmaybe-uninitialized]
  199 |     int z = z / y;
      |         ^
main.cpp:199:9: note: 'z' was declared here
  199 |     int z = z / y;
      |         ^

ソースコード

diff #

#pragma region Macros

#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,fma,abm,mmx,avx,avx2")

#include <bits/extc++.h>
// #include <atcoder/all>
// using namespace atcoder;
using namespace std;
using namespace __gnu_pbds;

// #include <boost/multiprecision/cpp_dec_float.hpp>
// #include <boost/multiprecision/cpp_int.hpp>
// namespace mp = boost::multiprecision;
// using Bint = mp::cpp_int;
// using Bdouble = mp::number<mp::cpp_dec_float<256>>;
// Bdouble Beps = 0.00000000000000000000000000000001; // 1e-32
// const bool equals(Bdouble a, Bdouble b) { return mp::fabs(a - b) < Beps; }

#define pb emplace_back
#define int ll
#define endl '\n'
// #define unordered_map<int, int> gp_hash_table<int, int, custom_hash> 

#define sqrt __builtin_sqrtl
#define cbrt __builtin_cbrtl
#define hypot __builtin_hypotl

#define next asdnext
#define prev asdprev

using ll = long long;
using ld = long double;
const ld PI = acosl(-1);
const int INF = 1 << 30;
const ll INFL = 1LL << 61;
// const int MOD = 998244353;
const int MOD = 1000000007;

const ld EPS = 1e-10;
const bool equals(ld a, ld b) { return fabs((a) - (b)) < EPS; }

const vector<int> dx = {0, 1, 0, -1, 1, 1, -1, -1}; // → ↓ ← ↑ ↘ ↙ ↖ ↗
const vector<int> dy = {1, 0, -1, 0, 1, -1, -1, 1};

struct Edge {
    int from, to, cost;
    Edge() : from(-1), to(-1), cost(-1) {}
    Edge(int to, int cost) : to(to), cost(cost) {}
    Edge(int from, int to, int cost) : from(from), to(to), cost(cost) {}
    bool operator ==(const Edge& e) {
        return this->from == e.from && this->to == e.to && this->cost == e.cost;
    }
    bool operator !=(const Edge& e) {
        return this->from != e.from or this->to != e.to or this->cost != e.cost;
    }
};

chrono::system_clock::time_point start;
__attribute__((constructor))
void constructor() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout << fixed << setprecision(10);
    start = chrono::system_clock::now();
}

random_device seed_gen;
mt19937_64 rng(seed_gen());
uniform_int_distribution<int> dist_x(0, 1e9);
struct RNG {
    unsigned Int(unsigned l, unsigned r) {
        return dist_x(rng) % (r - l + 1) + l;
    }
    ld Double() {
        return ld(dist_x(rng)) / 1e9;
    }
} rnd;

using i64 = ll;
// using i64 = uint64_t;
// bit演算, x==0の場合は例外処理した方がよさそう. 区間は [l, r)
i64 lrmask(i64 l, i64 r) { return (1LL << r) - (1LL << l); }
i64 sub_bit(i64 x, i64 l, i64 r) { i64 b = x & ((1LL << r) - (1LL << l)); return b >> l; } // r溢れ可
i64 bit_width(i64 x) { return 64 - __builtin_clzll(x) + (x == 0); }

i64 popcount(i64 x) { return __builtin_popcountll(x); }
i64 popcount(i64 x, i64 l, i64 r) { return __builtin_popcountll(sub_bit(x, l, r)); }
i64 unpopcount(i64 x) { return bit_width(x) - __builtin_popcountll(x); }
i64 unpopcount(i64 x, i64 l, i64 r) { return r - l - __builtin_popcountll(sub_bit(x, l, r)); }
bool is_pow2(i64 x) { return __builtin_popcountll(x) == 1; }

i64 top_bit(i64 x) { return 63 - __builtin_clzll(x);} // 2^kの位 (x > 0)
i64 bot_bit(i64 x) { return __builtin_ctz(x);} // 2^kの位 (x > 0)
// i64 next_bit(i64 x, i64 k) { return 0; }
// i64 prev_bit(i64 x, i64 k) { return 0; }
// i64 kth_bit(i64 x, i64 k) { return 0; }
i64 MSB(i64 x) { if (x == 0) return 0; return 1LL << (63 - __builtin_clzll(x)); } // mask
i64 LSB(i64 x) { return (x & -x); } // mask

i64 countl_zero(i64 x) { return __builtin_clzll(x); }
i64 countl_one(i64 x) {
    i64 ret = 0, k = 63 - __builtin_clzll(x);
    while (k != -1 && (x & (1LL << k))) { k--; ret++; }
    return ret;
}
i64 countr_zero(i64 x) { return __builtin_ctzll(x); } // x==0のとき64が返ることに注意
i64 countr_one(i64 x) { i64 ret = 0; while (x & 1) { x >>= 1; ret++; } return ret; }

i64 floor_log2(i64 x) { if (x == 0) return 0; return 63 - __builtin_clzll(x); }
i64 bit_floor(i64 x) { if (x == 0) return 0; return 1LL << (63 - __builtin_clzll(x)); } // MSBと同じ
i64 ceil_log2(i64 x) { if (x == 0) return 0; return 64 - __builtin_clzll(x - 1); }
i64 bit_ceil(i64 x) { if (x == 0) return 0; return 1LL << (64 - __builtin_clzll(x - 1)); }

i64 rotl(i64 x, i64 k) { // 有効bit内でrotate. オーバーフロー注意
    i64 w = bit_width(x); k %= w;
    return ((x << k) | (x >> (w - k))) & ((1LL << w) - 1);
}
// i64 rotl(i64 x, i64 l, i64 m, i64 r) {}
i64 rotr(i64 x, i64 k) {
    i64 w = bit_width(x); k %= w;
    return ((x >> k) | (x << (w - k))) & ((1LL << w) - 1);
}
// i64 rotr(i64 x, i64 l, i64 m, i64 r) {}
i64 bit_reverse(i64 x) { // 有効bit内で左右反転
    i64 r = 0, w = bit_width(x);
    for (i64 i = 0; i < w; i++) r |= ((x >> i) & 1) << (w - i - 1);
    return r;
}
// i64 bit_reverse(i64 x, i64 l, i64 r) { return 0; }

bool is_palindrome(i64 x) { return x == bit_reverse(x); }
bool is_palindrome(i64 x, i64 l, i64 r) { i64 b = sub_bit(x, l, r); return b == bit_reverse(b); }
i64 concat(i64 a, i64 b) { return (a << bit_width(b)) | b; } // オーバーフロー注意
i64 erase(i64 x, i64 l, i64 r) { return x>>r<<l | x&(1LL<<l - 1); } // [l, r) をカット

i64 hamming(i64 a, i64 b) { return __builtin_popcountll(a ^ b); }
i64 hamming(i64 a, i64 b, i64 l, i64 r) { return __builtin_popcountll(sub_bit(a, l, r) ^ sub_bit(b, l, r)); }
i64 compcount(i64 x) { return (__builtin_popcountll(x ^ (x >> 1)) + (x & 1)) / 2; }
i64 compcount2(i64 x) { return compcount(x & (x >> 1)); } // 長さ2以上の連結成分の個数
i64 adjacount(i64 x) { return __builtin_popcountll(x & (x >> 1)); } // 隣接する1のペアの個数

i64 next_combination(i64 x) {
    i64 t = x | (x - 1); return (t + 1) | (((~t & -~t) - 1) >> (__builtin_ctz(x) + 1));
}


__int128_t POW(__int128_t x, int n) {
    __int128_t ret = 1;
    assert(n >= 0);
    if (x == 1 or n == 0) ret = 1;
    else if (x == -1 && n % 2 == 0) ret = 1; 
    else if (x == -1) ret = -1; 
    else if (n % 2 == 0) {
        assert(x < INFL);
        ret = POW(x * x, n / 2);
    } else {
        assert(x < INFL);
        ret = x * POW(x, n - 1);
    }
    return ret;
}
int per(int x, int y) { // x = qy + r (0 <= r < y) を満たすq
    assert(y != 0);
    if (x >= 0 && y > 0) return x / y;
    if (x >= 0 && y < 0) return x / y - (x % y < 0);
    if (x < 0 && y < 0) return x / y + (x % y < 0);
    return x / y - (x % y < 0); //  (x < 0 && y > 0) 
}
int mod(int x, int y) { // x = qy + r (0 <= r < y) を満たすr
    assert(y != 0);
    if (x >= 0) return x % y;
    __int128_t ret = x % y; // (x < 0)
    ret += (__int128_t)abs(y) * INFL;
    ret %= abs(y);
    return ret;
}
int floor(int x, int y) { // (ld)x / y 以下の最大の整数
    assert(y != 0);
    if (y < 0) x = -x, y = -y;
    return x >= 0 ? x / y : (x + 1) / y - 1;
}
int ceil(int x, int y) { // (ld)x / y 以上の最小の整数
    assert(y != 0);
    if (y < 0) x = -x, y = -y;
    return x > 0 ? (x - 1) / y + 1 : x / y;
}
int round(int x, int y) {
    assert(y != 0);
    return (x * 2 + y) / (y * 2);
}
int round(int x, int y, int k) { // (ld)(x/y)を10^kの位に関して四捨五入
    assert(y != 0); // TODO
    return INF;
}
int round2(int x, int y) { // 五捨五超入 // 未verify
    assert(y != 0);
    if (y < 0) y = -y, x = -x;
    int z = z / y;
    if ((z * 2 + 1) * y <= y * 2) z++;
    return z;
}
// int round(ld x, int k) { // xを10^kの位に関して四捨五入
// }
// int floor(ld x, int k) { // xを10^kの位に関してflooring
// }
// int ceil(ld x, int k) { // xを10^kの位に関してceiling
// }
// int kth(int x, int y, int k) { // x / yの10^kの位の桁
// }
int floor(ld x, ld y) { // 誤差対策TODO
    assert(!equals(y, 0));
    return floor(x / y);
    // floor(x) = ceil(x - 1) という話も
}
int ceil(ld x, ld y) { // 誤差対策TODO // ceil(p/q) = -floor(-(p/q))らしい
    assert(!equals(y, 0));
    return ceil(x / y);
    // ceil(x) = floor(x + 1)
}
int perl(ld x, ld y) { // x = qy + r (0 <= r < y, qは整数) を満たす q
    // 未verify. 誤差対策TODO. EPS外してもいいかも。
    assert(!equals(y, 0));
    if (x >= 0 && y > 0) return floor(x / y)+EPS;
    if (x >= 0 && y < 0) return -floor(x / fabs(y));
    if (x < 0 && y < 0) return floor(x / y) + (x - floor(x/y)*y < -EPS);
    return floor(x / y) - (x - floor(x/y)*y < -EPS); //  (x < 0 && y > 0) 
}
ld modl(ld x, ld y) { // x = qy + r (0 <= r < y, qは整数) を満たす r
    // 未verify. 誤差対策TODO. -0.0が返りうる。
    assert(!equals(y, 0));
    if (x >= 0) return x - fabs(y)*fabs(per(x, y));
    return x - fabs(y)*floor(x, fabs(y));
}
int seisuu(ld x) { return (int)x; } // 整数部分. 誤差対策TODO
int modf(ld x) {
	if (x < 0) return ceill(x);
	else return floorl(x);
}
// 正なら+EPS, 負なら-EPSしてから、文字列に直して小数点以下を捨てる?
int seisuu(int x, int y) {
    assert(y != 0);
    return x / y;
}
int seisuu(ld x, ld y) { // 誤差対策TODO
    assert(!equals(y, 0));
    return (int)(x / y);
}

template <class T> pair<T, T> max(const pair<T, T> &a, const pair<T, T> &b) {
    if (a.first > b.first or a.first == b.first && a.second > b.second) return a;
    return b;
}
template <class T> pair<T, T> min(const pair<T, T> &a, const pair<T, T> &b) {
    if (a.first < b.first or a.first == b.first && a.second < b.second) return a;
    return b;
}

template <class T> bool chmax(T &a, const T& b) {
    if (a < b) { a = b; return true; } return false;
}
template <class T> bool chmin(T &a, const T& b) {
    if (a > b) { a = b; return true; } return false;
}
template <class T> T mid(T a, T b, T c) { // 誤差対策TODO
    return a + b + c - max({a, b, c}) - min({a, b, c});
}
template <class T> void Sort(T &a, T &b, bool rev = false) { 
    if (rev == false) {  // TODO テンプレート引数
        if (a > b) swap(a, b);
    } else {
        if (b > a) swap(b, a);
    }
}
template <class T> void sort(T &a, T &b, T &c, bool rev = false) {
    if (rev == false) { 
        if (a > b) swap(a, b); if (a > c) swap(a, c); if (b > c) swap(b, c);
    } else {
        if (c > b) swap(c, b); if (c > a) swap(c, a); if (b > a) swap(b, a);
    }
}
template <class T> void sort(T &a, T &b, T &c, T &d, bool rev = false) {
    if (rev == false) { 
        if (a > b) swap(a, b); if (a > c) swap(a, c);  if (a > d) swap(a, d);
        if (b > c) swap(b, c); if (b > d) swap(b, d); if (c > d) swap(c, d);
    } else {
        if (d > c) swap(d, c); if (d > b) swap(d, b); if (d > a) swap(d, a);
        if (c > b) swap(c, b); if (c > a) swap(c, a); if (b > a) swap(b, a);
    }
}

struct custom_hash {
    static uint64_t splitmix64(uint64_t x) {
        x += 0x9e3779b97f4a7c15;
        x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
        x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
        return x ^ (x >> 31);
    }

    size_t operator()(uint64_t x) const {
        static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
        return splitmix64(x + FIXED_RANDOM);
    }
};

class Compress {
public:
    int sz = 0;
    // gp_hash_table<int, int, custom_hash> Z, UZ;
    unordered_map<int, int> Z;    // 元の値 -> 圧縮した値
    unordered_map<int, int> UZ;   // 圧縮した値 -> 元の値

    Compress(const vector<int> &V, int base = 0) {
        this->sz = base;
        set<int> s(V.begin(), V.end());

        for (int x : s) {
            this->Z[x] = this->sz;
            this->UZ[this->sz] = x;
            this->sz++;
        }
    }
    
    Compress(const vector<int> &V1, const vector<int> &V2, int base = 0) {
        this->sz = base;
        vector<int> V3 = V2;
        V3.insert(V3.end(), V1.begin(), V1.end());
        set<int> s(V3.begin(), V3.end());

        for (int x : s) {
            this->Z[x] = this->sz;
            this->UZ[this->sz] = x;
            this->sz++;
        }
    }

    Compress(const vector<int> &V1, const vector<int> &V2, const vector<int> &V3, int base = 0) {
        this->sz = base;
        vector<int> V4 = V1;
        V4.insert(V4.end(), V2.begin(), V2.end());
        V4.insert(V4.end(), V3.begin(), V3.end());
        set<int> s(V4.begin(), V4.end());

        for (int x : s) {
            this->Z[x] = this->sz;
            this->UZ[this->sz] = x;
            this->sz++;
        }
    }

    Compress(const vector<int> &V1, const vector<int> &V2,
            const vector<int> &V3, const vector<int> &V4, int base = 0) {
        this->sz = base;
        vector<int> V5 = V1;
        V5.insert(V5.end(), V2.begin(), V2.end());
        V5.insert(V5.end(), V3.begin(), V3.end());
        V5.insert(V5.end(), V4.begin(), V4.end());
        set<int> s(V5.begin(), V5.end());

        for (int x : s) {
            this->Z[x] = this->sz;
            this->UZ[this->sz] = x;
            this->sz++;
        }
    }

    vector<int> zip(const vector<int> &V) {
        vector<int> ret = V;
        for (int i = 0; i < (int)V.size(); i++) {
            ret[i] = Z[ret[i]];
        }
        return ret;
    }

    vector<int> unzip(const vector<int> &V) {
        vector<int> ret = V;
        for (int i = 0; i < (int)V.size(); i++) {
            ret[i] = UZ[ret[i]];
        }
        return ret;
    }

    int size() { return sz; }

    int encode(int x) { return Z[x]; }
    int decode(int x) {
        if (UZ.find(x) == UZ.end()) return -1; // xが元の配列に存在しないとき
        return UZ[x];
    }
};

class UnionFind {
public:
	UnionFind() = default;
    UnionFind(int N) : par(N), sz(N, 1) {
        iota(par.begin(), par.end(), 0);
    }
	int root(int x) {
		if (par[x] == x) return x;
		return (par[x] = root(par[x]));
	}
	bool unite(int x, int y) {
		int rx = root(x);
		int ry = root(y);
        if (rx == ry) return false;
		if (sz[rx] < sz[ry]) swap(rx, ry);
		sz[rx] += sz[ry];
		par[ry] = rx;
        return true;
	}
	bool issame(int x, int y) { return (root(x) == root(y)); }
	int size(int x) { return sz[root(x)]; }
    vector<vector<int>> groups(int N) {
        vector<vector<int>> G(N);
        for (int x = 0; x < N; x++) {
            G[root(x)].push_back(x);
        }
		G.erase( remove_if(G.begin(), G.end(),
            [&](const vector<int>& V) { return V.empty(); }), G.end());
        return G;
    }
private:
	vector<int> par, sz;
};

template<typename T>
struct BIT {
    int N;             // 要素数
    vector<T> bit[2];  // データの格納先
    BIT(int N_, int x = 0) {
        N = N_ + 1;
        bit[0].assign(N, 0); bit[1].assign(N, 0);
        if (x != 0) {
            for (int i = 0; i < N; i++) add(i, x);
        }
    }
    BIT(const vector<int> &A) {
        N = A.size() + 1;
        bit[0].assign(N, 0); bit[1].assign(N, 0);
        for (int i = 0; i < (int)A.size(); i++) add(i, A[i]);
    }
    void add_sub(int p, int i, T x) {
        while (i < N) { bit[p][i] += x; i += (i & -i); }
    }
    void add(int l, int r, T x) {
        add_sub(0, l + 1, -x * l); add_sub(0, r + 1, x * r);
        add_sub(1, l + 1, x); add_sub(1, r + 1, -x);
    }
    void add(int i, T x) { add(i, i + 1, x); }
    T sum_sub(int p, int i) {
        T ret = 0;
        while (i > 0) { ret += bit[p][i]; i -= (i & -i); }
        return ret;
    }
    T sum(int i) { return sum_sub(0, i) + sum_sub(1, i) * i; }
    T sum(int l, int r) { return sum(r) - sum(l); }
    T get(int i) { return sum(i, i + 1); }
    void set(int i, T x) { T s = get(i); add(i, -s + x); }
};

template<int mod> class Modint {
public:
    int val = 0;
    Modint(int x = 0) { while (x < 0) x += mod; val = x % mod; }
    Modint(const Modint &r) { val = r.val; }

    Modint operator -() { return Modint(-val); } // 単項
    Modint operator +(const Modint &r) { return Modint(*this) += r; }
    Modint operator +(const int &q) { Modint r(q); return Modint(*this) += r; }
    Modint operator -(const Modint &r) { return Modint(*this) -= r; }
    Modint operator -(const int &q) { Modint r(q); return Modint(*this) -= r; }
    Modint operator *(const Modint &r) { return Modint(*this) *= r; }
    Modint operator *(const int &q) { Modint r(q); return Modint(*this) *= r; }
    Modint operator /(const Modint &r) { return Modint(*this) /= r; }
    Modint operator /(const int &q) { Modint r(q); return Modint(*this) /= r; }
    
    Modint& operator ++() { val++; if (val >= mod) val -= mod; return *this; } // 前置
    Modint operator ++(signed) { ++*this; return *this; } // 後置
    Modint& operator --() { val--; if (val < 0) val += mod; return *this; }
    Modint operator --(signed) { --*this; return *this; }
    Modint &operator +=(const Modint &r) { val += r.val; if (val >= mod) val -= mod; return *this; }
    Modint &operator +=(const int &q) { Modint r(q); val += r.val; if (val >= mod) val -= mod; return *this; }
    Modint &operator -=(const Modint &r) { if (val < r.val) val += mod; val -= r.val; return *this; }
    Modint &operator -=(const int &q) { Modint r(q);  if (val < r.val) val += mod; val -= r.val; return *this; }
    Modint &operator *=(const Modint &r) { val = val * r.val % mod; return *this; }
    Modint &operator *=(const int &q) { Modint r(q); val = val * r.val % mod; return *this; }
    Modint &operator /=(const Modint &r) {
        int a = r.val, b = mod, u = 1, v = 0;
        while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);}
        val = val * u % mod; if (val < 0) val += mod;
        return *this;
    }
    Modint &operator /=(const int &q) {
        Modint r(q); int a = r.val, b = mod, u = 1, v = 0;
        while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);}
        val = val * u % mod; if (val < 0) val += mod;
        return *this;
    }
    bool operator ==(const Modint& r) { return this -> val == r.val; }
    bool operator <(const Modint& r) { return this -> val < r.val; }
    bool operator >(const Modint& r) { return this -> val > r.val; }
    bool operator !=(const Modint& r) { return this -> val != r.val; }
};

using mint = Modint<MOD>;

istream &operator >>(istream &is, mint& x) {
    int t; is >> t; x = t; return (is);
}
ostream &operator <<(ostream &os, const mint& x) {
    return os << x.val;
}
mint modpow(const mint &x, int n) {
    if (n < 0) return (mint)1 / modpow(x, -n); // 未verify
    assert(n >= 0);
    if (n == 0) return 1;
    mint t = modpow(x, n / 2);
    t = t * t;
    if (n & 1) t = t * x;
    return t;
}

int modpow(__int128_t x, int n, int mod) {
    assert(n >= 0 && mod > 0); // TODO: n <= -1
    __int128_t ret = 1;
    while (n > 0) {
        if (n % 2 == 1) ret = ret * x % mod;
        x = x * x % mod;
        n /= 2;
    }
    return ret;
}
int modinv(__int128_t x, int mod) {
    assert(mod > 0);
    // assert(x > 0);
    if (x == 1 or x == 0) return 1;
    return mod - modinv(mod % x, mod) * (mod / x) % mod;
}

istream &operator >>(istream &is, __int128_t& x) {
    string S; is >> S;
    __int128_t ret = 0;
    int f = 1;
    if (S[0] == '-') f = -1; 
    for (int i = 0; i < S.length(); i++)
        if ('0' <= S[i] && S[i] <= '9')
            ret = ret * 10 + S[i] - '0';
    x = ret * f;
    return (is);
}
ostream &operator <<(ostream &os, __int128_t x) {
    ostream::sentry s(os);
    if (s) {
        __uint128_t tmp = x < 0 ? -x : x;
        char buffer[128]; char *d = end(buffer);
        do {
            --d; *d = "0123456789"[tmp % 10]; tmp /= 10;
        } while (tmp != 0);
        if (x < 0) { --d; *d = '-'; }
        int len = end(buffer) - d;
        if (os.rdbuf()->sputn(d, len) != len) os.setstate(ios_base::badbit);
    }
    return os;
}

__int128_t stoll(string &S) {
    __int128_t ret = 0; int f = 1;
    if (S[0] == '-') f = -1; 
    for (int i = 0; i < S.length(); i++)
        if ('0' <= S[i] && S[i] <= '9') ret = ret * 10 + S[i] - '0';
    return ret * f;
}
__int128_t gcd(__int128_t a, __int128_t b) { return b ? gcd(b, a % b) : a; }
__int128_t lcm(__int128_t a, __int128_t b) {
    return a / gcd(a, b) * b;
    // lcmが__int128_tに収まる必要あり
}

string to_string(ld x, int k) { // xの小数第k位までをstring化する
    assert(k >= 0);
    stringstream ss;
    ss << setprecision(k + 2) << x;
    string s = ss.str();
    if (s.find('.') == string::npos) s += '.';
    int pos = s.find('.');
    for (int i = 0; k >= (int)s.size() - 1 - pos; i++) s += '0';
    s.pop_back();
    if (s.back() == '.') s.pop_back();
    return s;

    // stringstream ss; // 第k+1位を四捨五入して第k位まで返す
    // ss << setprecision(k + 1) << x;
    // string s = ss.str();
    // if (s.find('.') == string::npos) s += '.';
    // int pos = s.find('.');
    // for (int i = 0; k > (int)s.size() - 1 - pos; i++) s += '0';
    // if (s.back() == '.') s.pop_back();
    // return s;
}
string to_string(__int128_t x) {
    string ret = "";
    if (x < 0) { ret += "-"; x *= -1; }
    while (x) { ret += (char)('0' + x % 10); x /= 10; }
    reverse(ret.begin(), ret.end());
    return ret;
}
string to_string(char c) { string s = ""; s += c; return s; }

template<class T> size_t HashCombine(const size_t seed,const T &v) {
    return seed^(hash<T>()(v)+0x9e3779b9+(seed<<6)+(seed>>2));
}
template<class T,class S> struct hash<pair<T,S>>{
    size_t operator()(const pair<T,S> &keyval) const noexcept {
        return HashCombine(hash<T>()(keyval.first), keyval.second);
    }
};
template<class T> struct hash<vector<T>>{
    size_t operator()(const vector<T> &keyval) const noexcept {
        size_t s=0;
        for (auto&& v: keyval) s=HashCombine(s,v);
        return s;
    }
};
template<int N> struct HashTupleCore{
    template<class Tuple> size_t operator()(const Tuple &keyval) const noexcept{
        size_t s=HashTupleCore<N-1>()(keyval);
        return HashCombine(s,get<N-1>(keyval));
    }
};
template <> struct HashTupleCore<0>{
    template<class Tuple> size_t operator()(const Tuple &keyval) const noexcept{ return 0; }
};
template<class... Args> struct hash<tuple<Args...>>{
    size_t operator()(const tuple<Args...> &keyval) const noexcept {
        return HashTupleCore<tuple_size<tuple<Args...>>::value>()(keyval);
    }
};

vector<mint> _fac, _finv, _inv;
void COMinit(int N) {
    _fac.resize(N + 1); _finv.resize(N + 1);  _inv.resize(N + 1);
    _fac[0] = _fac[1] = 1; _finv[0] = _finv[1] = 1; _inv[1] = 1;
    for (int i = 2; i <= N; i++) {
        _fac[i] = _fac[i-1] * mint(i);
        _inv[i] = -_inv[MOD % i] * mint(MOD / i);
        _finv[i] = _finv[i - 1] * _inv[i];
    }
}

mint FAC(int N) {
    if (N < 0) return 0; return _fac[N];
}
mint COM(int N, int K) {
    if (N < K) return 0; if (N < 0 or K < 0) return 0;
    return _fac[N] * _finv[K] * _finv[N - K];
}
mint PERM(int N, int K) {
    if (N < K) return 0; if (N < 0 or K < 0) return 0;
    return _fac[N] *  _finv[N - K];
}
mint NHK(int N, int K) { // initのサイズに注意
    if (N == 0 && K == 0)  return 1;
    return COM(N + K - 1, K);
}

#pragma endregion

class Point3d {
public:
    double x, y, z;

    Point3d(double x = 0, double y = 0, double z = 0) : x(x), y(y), z(z) {}

    Point3d operator+(const Point3d& a) {
        return Point3d(x + a.x, y + a.y, z + a.z);
    }
    Point3d operator-(const Point3d& a) {
        return Point3d(x - a.x, y - a.y, z - a.z);
    }
    Point3d operator*(const double& d) {
        return Point3d(x * d, y * d, z * d);
    }
    Point3d operator/(const double& d) {
        return Point3d(x / d, y / d, z / d);
    }

    bool operator<(const Point3d& p) const {
        if (!equals(x, p.x)) return x < p.x;
        if (!equals(y, p.y)) return y < p.y;
        if (!equals(z, p.z)) return z < p.z;
        return false;
    }

    bool operator==(const Point3d& p) const {
        return equals(x, p.x) && equals(y, p.y) && equals(z, p.z);
    }

    friend istream& operator>>(istream& is, Point3d& p) {
		is >> p.x >> p.y >> p.z;
		return is;
	}
	friend ostream& operator<<(ostream& os, Point3d& p) {
		os << p.x << " " << p.y << " " << p.z;
		return os;
	}
};

int sign(double x) { return x < -EPS ? -1 : x > EPS; } // -1(負)/0/1(正)

struct Segment3d {
    Point3d p[2], d; // pは端点、dは向き
    Segment3d(Point3d p1 = Point3d(), Point3d p2 = Point3d()) {
        p[0] = p1, p[1] = p2;
        d = p[1] - p[0];
    }
    bool operator==(const Segment3d& S) const {
        return (p[0] == S.p[0] && p[1] == S.p[1]) || (p[0] == S.p[1] && p[1] == S.p[0]);
    }
};

using Line3d = Segment3d;
using Vector3d = Point3d;

bool is_parallel(Vector3d v1, Vector3d v2) {
    if (equals(v1.x*v2.y, v1.y*v2.x) && 
        equals(v1.y*v2.z, v1.z*v2.y) &&
        equals(v1.z*v2.x, v1.x*v2.z)) return true;
    return false;
}
bool is_orthogonal(Vector3d v1, Vector3d v2) {
    if (equals(v1.x*v2.x + v1.y*v2.y + v1.z*v2.z, 0)) return true;
    return false;
}

bool is_parallel(Line3d &l, Line3d &m) {
    return is_parallel(l.p[1] - l.p[0], m.p[1] - m.p[0]);
}
bool is_orthogonal(Line3d &l, Line3d &m) {
    return is_orthogonal(l.p[1] - l.p[0], m.p[1] - m.p[0]);
}

ostream& operator<<(ostream& os, const Point3d& p) {
    return os << "(" << p.x << "," << p.y << "," << p.z << ")";
}

ostream& operator<<(ostream& os, const Segment3d& S) {
    return os << "(" << S.p[0] << "," << S.p[1] << ")";
}

double dot(const Point3d& a, const Point3d& b) {
    return a.x * b.x + a.y * b.y + a.z * b.z;
}

Vector3d cross(const Point3d& a, const Point3d& b) {
    return Vector3d(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
}

inline double norm(const Point3d& p) {
    return p.x * p.x + p.y * p.y + p.z * p.z;
}

inline double abs(const Point3d& p) {
    return sqrt(norm(p));
}

double rad_to_deg(double r) { return (r * 180.0 / PI); }
double deg_to_rad(double d) { return (d * PI / 180.0); }

double angle(Point3d a, Point3d b) {
    double costheta = dot(a, b) / norm(a) / norm(b);
    return acos(max(-1.0, min(1.0, costheta)));
}

Point3d rotateccw90(Point3d a) { return Point3d(-a.y, a.x); }
Point3d rotatecw90(Point3d a) { return Point3d(a.y, -a.x); }
Point3d rotateccw(Point3d a, double t) { return Point3d(a.x * cos(t) - a.y * sin(t), a.x * sin(t) + a.y * cos(t)); }
Point3d rotatecw(Point3d a, double t) { return Point3d(a.x * cos(t) + a.y * sin(t), -a.x * sin(t) + a.y * cos(t)); }

double distanceLP(Line3d L, Point3d p) {
    return abs(cross(L.p[1] - L.p[0], p - L.p[0])) / abs(L.p[1] - L.p[0]);
}

double dist(Point3d p1, Point3d p2) {
    return sqrt(norm(p1 - p2));
}

Point3d project(Segment3d S, Point3d p) {
    Vector3d base = S.p[1] - S.p[0];
    double t = dot(p - S.p[0], base) / norm(base);
    return S.p[0] + base * t;
}

Point3d reflect(Segment3d S, Point3d p) {
    return p + (project(S, p) - p) * 2.0;
}

bool on_line3d(Line3d L, Point3d p) {
    return equals(abs(cross(L.p[1] - p, L.p[0] - p)), 0);
}

bool on_segment3d(Segment3d S, Point3d p) {
    if (!on_line3d(S, p)) return false;
    double dist[3] = {abs(S.p[1] - S.p[0]), abs(p - S.p[0]), abs(p - S.p[1])};
    return on_line3d(S, p) && equals(dist[0], dist[1] + dist[2]);
}

double distanceSP(Segment3d S, Point3d p) {
    Point3d r = project(S, p);
    if (on_segment3d(S, r)) return abs(p - r);
    return min(abs(S.p[0] - p), abs(S.p[1] - p));
}


class Plane3d {
public:
    Point3d normal_vector;  // 法線ベクトル
    double d;               // 平面方程式 normal_vector = (a,b,c), a*x + b*y + c*z + d = 0

    Plane3d(Point3d normal_vector = Point3d(), double d = 0) : normal_vector(normal_vector), d(d) {}
    Plane3d(Vector3d a, Vector3d b, Vector3d c) {
        Vector3d v1 = b - a;
        Vector3d v2 = c - a;
        Vector3d tmp = cross(v1, v2);
        normal_vector = tmp / abs(tmp);
        set_d(a);
    }

    // From three non-collinear points P,Q,R
    // Plane3d(Point3d p, Point3d q, Point3d r) : Plane3d((q - p) * (r - p), p) {}

    // 点pの平面に対する位置(正/負)
    double side(Point3d p) { return dot(normal_vector, p) - d; }

    // shift the Plane3d perpendicular to normal_vector by distance dist
    Plane3d shiftUp(double dist) { return {normal_vector, d + dist * abs(normal_vector)}; }

    pair<Point3d, Point3d> get_two_points_on_plane() {
        assert(sign(normal_vector.x) != 0 or sign(normal_vector.y) != 0 or sign(normal_vector.z) != 0);
        if (sign(normal_vector.x) == 0 && sign(normal_vector.y) == 0) return make_pair(Point3d(1, 0, d/normal_vector.z),  Point3d(0, 1, d/normal_vector.z));
        if (sign(normal_vector.y) == 0 && sign(normal_vector.z) == 0) return make_pair(Point3d(d/normal_vector.x, 1, 0),  Point3d(d/normal_vector.x, 0, 1));
        if (sign(normal_vector.z) == 0 && sign(normal_vector.x) == 0) return make_pair(Point3d(1, d/normal_vector.y, 0),  Point3d(0, d/normal_vector.y, 1));
        if (sign(normal_vector.x) == 0) return make_pair(Point3d(1, d/normal_vector.y, 0),  Point3d(0, 0, d/normal_vector.z));
        if (sign(normal_vector.y) == 0) return make_pair(Point3d(0, 1, d/normal_vector.z),  Point3d(d/normal_vector.x, 0, 0));
        if (sign(normal_vector.z) == 0) return make_pair(Point3d(d/normal_vector.x, 0, 1),  Point3d(0, d/normal_vector.y, 0));
        if (sign(d)!=0) return make_pair(Point3d(d/normal_vector.x, 0, 0),  Point3d(0, d/normal_vector.y, 0));
        return make_pair(Point3d(normal_vector.y, -normal_vector.x, 0),  Point3d(-normal_vector.y, normal_vector.x, 0));
    }

    // 法線ベクトルnormal_vectorと平面上の1点からdを計算する
    void set_d(Point3d p) {
        d = dot(normal_vector, p);
    }

    // 平面と点pの距離を求める
    double distanceP(Point3d p) {
        Point3d a = normal_vector * d;  // 平面上の適当な点をつくる
        return abs(dot(p - a, normal_vector));
    }

    // 平面上でもっとも点pと近い点を求める
    Point3d projection(Point3d p) {
        Point3d a = normal_vector * d;
        return p - (normal_vector * dot(p - a, normal_vector));
    }

    Point3d reflection(Point3d p) { // 未
        return p + (projection(p) - p) * 2.;
    }

    // 平面と線分が交差するか
    bool intersectS(Segment3d seg) {
        Point3d a = normal_vector * d;
        double res1 = dot(a - seg.p[0], normal_vector);
        double res2 = dot(a - seg.p[1], normal_vector);
        if (res1 > res2) swap(res1, res2);
        if ((equals(res1, 0.0) || res1 < 0) && (equals(res2, 0.0) || res2 > 0)) return true;
        return false;
    }

    // 平面と線分の交点を求める
    Point3d crosspointS(Segment3d seg) {
        Point3d a = normal_vector * d;
        double dot_p0a = fabs(dot(seg.p[0] - a, normal_vector));
        double dot_p1a = fabs(dot(seg.p[1] - a, normal_vector));
        if (equals(dot_p0a + dot_p1a, 0)) return seg.p[0];
        return seg.p[0] + (seg.p[1] - seg.p[0]) * (dot_p0a / (dot_p0a + dot_p1a));
    }
};

bool is_parallel(Plane3d P, Line3d &L) {
    return is_orthogonal(P.normal_vector, L.p[1] - L.p[0]);
}
bool is_orthogonal(Plane3d P, Line3d &L) {
    return is_parallel(P.normal_vector, L.p[1] - L.p[0]);
}

bool is_parallel(Plane3d P1, Plane3d P2) {
    return cross(P1.normal_vector, P2.normal_vector) == Vector3d(0, 0);
}
bool is_orthogonal(Plane3d P1, Plane3d P2) {
    return sign(dot(P1.normal_vector, P2.normal_vector)) == 0;
}
double angle(Plane3d p, Line3d l) {
    return PI / 2. - acos(min(fabs(dot(p.normal_vector, l.d)) / abs(p.normal_vector) / abs(l.d), 1.0));
}

double distPL(Plane3d P, Line3d L) {
    return is_parallel(P, L) ? P.distanceP(L.p[0]) : 0;
}
double distPS(Plane3d P, Segment3d S) {
    Point3d ha = P.projection(S.p[0]), hb = P.projection(S.p[1]);
    double ipa = dot(S.p[0] - ha, S.p[1] - S.p[0]), ipb = dot(S.p[1] - hb, S.p[0] - S.p[1]);
    return sign(ipa) < 0 && sign(ipb) < 0 ? 0 : min(P.distanceP(S.p[0]), P.distanceP(S.p[1]));
}

using P3db = pair<Point3d, bool>;

double area(Point3d a, Point3d b, Point3d c) {
    return abs(cross(b - a, c - a)) / 2.;
}


double orient_by_normal(Point3d p, Point3d q, Point3d r, Point3d n) {
    return dot(cross(q - p, r - p), n);
}
double distance_from_segment_to_point(Point3d a, Point3d b, Point3d c) {
    if (sign(dot(b - a, c - a)) < 0) return dist(a, c);
    if (sign(dot(a - b, c - b)) < 0) return dist(b, c);
    return fabs(abs(cross((b - a) / abs(b - a), c - a)));
}
double distance_from_triangle_to_point(Point3d a, Point3d b, Point3d c, Point3d d) {
    Plane3d P(a, b, c);
    Point3d proj = P.projection(d);

    double dis = min(distance_from_segment_to_point(a, b, d), min(distance_from_segment_to_point(b, c, d), distance_from_segment_to_point(c, a, d)));
    int o = sign(orient_by_normal(a, b, proj, P.normal_vector));
    int inside = o == sign(orient_by_normal(b, c, proj, P.normal_vector));
    inside &= o == sign(orient_by_normal(c, a, proj, P.normal_vector));
    if (inside) return abs(d - proj);
    return dis;
}

signed main() {
    Point3d a, b, c, p;
    cin >> a >> b >> c >> p;
    
    Plane3d f(a, b, c);
    int d = f.distanceP(p); // 平面ABCとの距離

    // 三角形ABCとの距離
    double mind = distance_from_triangle_to_point(a, b, c, p);

    if (equals(mind, d)) cout << "YES" << endl;
    else cout << "NO" << endl;
}
0