結果

問題 No.2602 Real Collider
ユーザー strangerxxxstrangerxxx
提出日時 2024-05-01 17:46:44
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 5,855 bytes
コンパイル時間 487 ms
コンパイル使用メモリ 82,544 KB
実行使用メモリ 84,264 KB
最終ジャッジ日時 2024-05-01 17:47:48
合計ジャッジ時間 58,093 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 34 ms
54,644 KB
testcase_01 AC 34 ms
53,908 KB
testcase_02 AC 34 ms
54,168 KB
testcase_03 AC 41 ms
55,848 KB
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 AC 593 ms
80,640 KB
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 AC 553 ms
80,460 KB
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 AC 819 ms
81,080 KB
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
testcase_32 WA -
testcase_33 WA -
testcase_34 WA -
testcase_35 WA -
testcase_36 WA -
testcase_37 WA -
testcase_38 WA -
testcase_39 WA -
testcase_40 WA -
testcase_41 WA -
testcase_42 WA -
testcase_43 WA -
testcase_44 WA -
testcase_45 WA -
testcase_46 WA -
testcase_47 WA -
testcase_48 WA -
testcase_49 WA -
testcase_50 WA -
testcase_51 WA -
testcase_52 WA -
testcase_53 WA -
testcase_54 WA -
testcase_55 WA -
testcase_56 WA -
testcase_57 WA -
testcase_58 WA -
testcase_59 WA -
testcase_60 WA -
testcase_61 WA -
testcase_62 WA -
testcase_63 WA -
testcase_64 WA -
testcase_65 WA -
testcase_66 WA -
testcase_67 WA -
testcase_68 WA -
testcase_69 WA -
testcase_70 WA -
testcase_71 WA -
testcase_72 WA -
testcase_73 WA -
testcase_74 WA -
testcase_75 WA -
testcase_76 WA -
testcase_77 WA -
testcase_78 WA -
testcase_79 WA -
testcase_80 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

import math


def resolve():
    import sys

    input = sys.stdin.readline
    MOD = 1000000007
    q = int(input())
    xa, ya, xb, yb, xc, yc = map(int, input().split())
    c = circumcenter2((xa, ya), (xb, yb), (xc, yc))
    d = distance(c, (xa, ya))
    for _ in range(q):
        x, y = map(int, input().split())
        print("Yes" if distance(c, (x, y)) <= d**2 else "No")


class Fraction:
    def __init__(self, a: int = 0, b: int = 1) -> None:
        if isinstance(a, Fraction):
            self.a, self.b = a.a, a.b
            return
        a, b = int(a), int(b)
        if b == 0:
            raise ZeroDivisionError(f"{a}/{b}")
        if b < 0:
            a, b = -a, -b
        self.a, self.b = a, b
        self._reducion()

    def _reducion(self):
        g = math.gcd(self.a, self.b)
        self.a //= g
        self.b //= g

    def __add__(self, other):
        if isinstance(other, Fraction):
            g = math.gcd(self.b, other.b)
            x = other.b // g * self.a
            y = self.b // g * other.a
            return Fraction(x + y, self.b // g * other.b)
        return Fraction(self.a + other * self.b, self.b)

    def __iadd__(self, other):
        if isinstance(other, Fraction):
            g = math.gcd(self.b, other.b)
            self.a *= other.b // g
            self.a += self.b // g * other.a
            self.b *= other.b // g
        else:
            self.a += other * self.b
        self._reducion()
        return self

    __radd__ = __add__

    def __sub__(self, other):
        if isinstance(other, Fraction):
            return self.__add__(-other)
        return self.__add__(-other)

    def __isub__(self, other):
        if isinstance(other, Fraction):
            return self.__iadd__(-other.a, other.b)
        return self.__iadd__(-other)

    def __rsub__(self, other):
        return -self + other

    def __mul__(self, other):
        if isinstance(other, Fraction):
            return Fraction(self.a * other.a, self.b * other.b)
        else:
            return Fraction(self.a * other, self.b)

    def __imul__(self, other):
        if isinstance(other, Fraction):
            self.a *= other.a
            self.b *= other.b
        else:
            self.a *= other
        self._reducion()
        return self

    __rmul__ = __mul__

    def __floordiv__(self, other):
        if isinstance(other, Fraction):
            return self.__mul__(other.inverse())
        return Fraction(self.a, self.b * other)

    def __ifloordiv__(self, other):
        if isinstance(other, Fraction):
            return self.__imul__(other.inverse())
        self.b *= other
        self._reducion()
        return self

    def __rfloordiv__(self, other):
        return self.inverse() * other

    __truediv__ = __floordiv__
    __itruediv__ = __ifloordiv__
    __rtruediv__ = __rfloordiv__

    def __pow__(self, other):
        if isinstance(other, Fraction):
            if other.b == 1:
                return self.__pow__(other.a)
            raise NotImplementedError
        return Fraction(self.a**other, self.b**other)

    def __ipow__(self, other):
        if isinstance(other, Fraction):
            if other.b == 1:
                return self.__ipow__(other.a)
            raise NotImplementedError
        self.a **= other
        self.b **= other
        return self

    def __rpow__(self, other):
        if self.b != 1:
            raise NotImplementedError
        return other**self.a

    def __floor__(self) -> int:
        return self.a // self.b

    def __ceil__(self) -> int:
        return (self.a + self.b - 1) // self.b

    __int__ = __floor__

    def __float__(self):
        return self.a / self.b

    def inverse(self):
        if self.a == 0:
            raise ZeroDivisionError(f"tring to calcuate inverse of {self.a}/{self.b}")
        return Fraction(self.b, self.a)

    def __pos__(self):
        return Fraction(self.a, self.b)

    def __neg__(self):
        return Fraction(-self.a, self.b)

    def __abs__(self):
        return Fraction(abs(self.a), self.b)

    def __eq__(self, other) -> bool:
        if isinstance(other, Fraction):
            return self.a == other.a and self.b == other.b
        return self.a == self.b * other

    def __gt__(self, other):
        if isinstance(other, Fraction):
            return self.a * other.b > other.a * self.b
        return self.a > self.b * other

    def __ge__(self, other):
        if isinstance(other, Fraction):
            return self.a * other.b >= other.a * self.b
        return self.a >= self.b * other

    def __lt__(self, other):
        if isinstance(other, Fraction):
            return self.a * other.b < other.a * self.b
        return self.a < self.b * other

    def __le__(self, other):
        if isinstance(other, Fraction):
            return self.a * other.b <= other.a * self.b
        return self.a <= self.b * other

    def __str__(self) -> str:
        return f"{self.a}/{self.b}"

    __repr__ = __str__

    def __hash__(self) -> int:
        return hash(self.__str__())


def distance(pa, pb):
    return sum([(i - j) ** 2 for i, j in zip(pa, pb)])


def circumcenter2(pa, pb, pc):
    # 外心
    x0 = (
        (pa[0] ** 2 + pa[1] ** 2) * (pb[1] - pc[1])
        + (pb[0] ** 2 + pb[1] ** 2) * (pc[1] - pa[1])
        + (pc[0] ** 2 + pc[1] ** 2) * (pa[1] - pb[1])
    )
    y0 = 2 * ((pb[1] - pc[1]) * (pa[0] - pb[0]) - (pa[1] - pb[1]) * (pb[0] - pc[0]))
    x1 = (
        (pa[1] ** 2 + pa[0] ** 2) * (pb[0] - pc[0])
        + (pb[1] ** 2 + pb[0] ** 2) * (pc[0] - pa[0])
        + (pc[1] ** 2 + pc[0] ** 2) * (pa[0] - pb[0])
    )
    y1 = 2 * ((pb[0] - pc[0]) * (pa[1] - pb[1]) - (pa[0] - pb[0]) * (pb[1] - pc[1]))
    return (
        Fraction(x0, y0) if y0 else 0,
        Fraction(x1, y1) if y1 else 0,
    )


if __name__ == "__main__":
    resolve()
0