結果
問題 | No.2602 Real Collider |
ユーザー | strangerxxx |
提出日時 | 2024-05-01 18:35:29 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 856 ms / 2,000 ms |
コード長 | 6,439 bytes |
コンパイル時間 | 287 ms |
コンパイル使用メモリ | 82,560 KB |
実行使用メモリ | 83,776 KB |
最終ジャッジ日時 | 2024-05-01 18:36:13 |
合計ジャッジ時間 | 39,033 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 39 ms
54,016 KB |
testcase_01 | AC | 38 ms
53,888 KB |
testcase_02 | AC | 38 ms
53,632 KB |
testcase_03 | AC | 43 ms
55,296 KB |
testcase_04 | AC | 38 ms
53,632 KB |
testcase_05 | AC | 43 ms
54,272 KB |
testcase_06 | AC | 38 ms
54,016 KB |
testcase_07 | AC | 39 ms
53,888 KB |
testcase_08 | AC | 38 ms
53,888 KB |
testcase_09 | AC | 40 ms
54,144 KB |
testcase_10 | AC | 856 ms
82,688 KB |
testcase_11 | AC | 591 ms
81,484 KB |
testcase_12 | AC | 247 ms
78,456 KB |
testcase_13 | AC | 180 ms
77,480 KB |
testcase_14 | AC | 262 ms
78,152 KB |
testcase_15 | AC | 410 ms
79,616 KB |
testcase_16 | AC | 582 ms
80,896 KB |
testcase_17 | AC | 691 ms
81,408 KB |
testcase_18 | AC | 203 ms
77,440 KB |
testcase_19 | AC | 234 ms
77,780 KB |
testcase_20 | AC | 625 ms
80,864 KB |
testcase_21 | AC | 224 ms
78,452 KB |
testcase_22 | AC | 222 ms
77,920 KB |
testcase_23 | AC | 192 ms
77,668 KB |
testcase_24 | AC | 247 ms
78,536 KB |
testcase_25 | AC | 210 ms
77,668 KB |
testcase_26 | AC | 257 ms
77,624 KB |
testcase_27 | AC | 236 ms
78,448 KB |
testcase_28 | AC | 333 ms
77,984 KB |
testcase_29 | AC | 234 ms
78,188 KB |
testcase_30 | AC | 255 ms
78,404 KB |
testcase_31 | AC | 559 ms
80,000 KB |
testcase_32 | AC | 531 ms
80,128 KB |
testcase_33 | AC | 567 ms
80,640 KB |
testcase_34 | AC | 664 ms
82,828 KB |
testcase_35 | AC | 427 ms
79,232 KB |
testcase_36 | AC | 258 ms
77,968 KB |
testcase_37 | AC | 631 ms
79,872 KB |
testcase_38 | AC | 630 ms
80,640 KB |
testcase_39 | AC | 608 ms
80,384 KB |
testcase_40 | AC | 369 ms
79,232 KB |
testcase_41 | AC | 676 ms
81,152 KB |
testcase_42 | AC | 561 ms
80,000 KB |
testcase_43 | AC | 614 ms
82,168 KB |
testcase_44 | AC | 675 ms
81,024 KB |
testcase_45 | AC | 507 ms
80,852 KB |
testcase_46 | AC | 481 ms
79,616 KB |
testcase_47 | AC | 587 ms
81,024 KB |
testcase_48 | AC | 553 ms
79,924 KB |
testcase_49 | AC | 463 ms
79,488 KB |
testcase_50 | AC | 412 ms
80,000 KB |
testcase_51 | AC | 438 ms
79,360 KB |
testcase_52 | AC | 330 ms
79,176 KB |
testcase_53 | AC | 586 ms
80,640 KB |
testcase_54 | AC | 481 ms
80,576 KB |
testcase_55 | AC | 533 ms
80,560 KB |
testcase_56 | AC | 529 ms
79,616 KB |
testcase_57 | AC | 497 ms
80,560 KB |
testcase_58 | AC | 377 ms
80,256 KB |
testcase_59 | AC | 566 ms
80,640 KB |
testcase_60 | AC | 372 ms
78,616 KB |
testcase_61 | AC | 548 ms
80,768 KB |
testcase_62 | AC | 624 ms
81,280 KB |
testcase_63 | AC | 717 ms
83,388 KB |
testcase_64 | AC | 671 ms
82,304 KB |
testcase_65 | AC | 495 ms
81,468 KB |
testcase_66 | AC | 599 ms
80,304 KB |
testcase_67 | AC | 449 ms
80,516 KB |
testcase_68 | AC | 478 ms
81,216 KB |
testcase_69 | AC | 413 ms
81,516 KB |
testcase_70 | AC | 414 ms
80,384 KB |
testcase_71 | AC | 420 ms
79,616 KB |
testcase_72 | AC | 586 ms
81,024 KB |
testcase_73 | AC | 569 ms
81,536 KB |
testcase_74 | AC | 578 ms
80,384 KB |
testcase_75 | AC | 664 ms
81,280 KB |
testcase_76 | AC | 541 ms
80,128 KB |
testcase_77 | AC | 554 ms
81,024 KB |
testcase_78 | AC | 630 ms
80,768 KB |
testcase_79 | AC | 643 ms
81,960 KB |
testcase_80 | AC | 710 ms
83,776 KB |
ソースコード
import math def resolve(): import sys input = sys.stdin.readline q = int(input()) xa, ya, xb, yb, xc, yc = map(int, input().split()) x = (xa, ya) y = (xb, yb) z = (xc, yc) try: c = circumcenter2(x, y, z) d = distance(c, (xa, ya)) except ZeroDivisionError: c = (0, 0) d = float("inf") da = ( distance(x, y), distance(y, z), distance(z, x), ) if da[0] >= da[1] + da[2]: c = center(x, y) d = distance(x, c) elif da[1] >= da[2] + da[0]: c = center(y, z) d = distance(y, c) elif da[2] >= da[0] + da[1]: c = center(z, x) d = distance(z, c) for _ in range(q): x, y = map(int, input().split()) print("Yes" if distance(c, (x, y)) <= d else "No") class Fraction: def __init__(self, a: int = 0, b: int = 1) -> None: if isinstance(a, Fraction): self.a, self.b = a.a, a.b return a, b = int(a), int(b) if b == 0: raise ZeroDivisionError(f"{a}/{b}") if b < 0: a, b = -a, -b self.a, self.b = a, b self._reducion() def _reducion(self): g = math.gcd(self.a, self.b) self.a //= g self.b //= g def __add__(self, other): if isinstance(other, Fraction): g = math.gcd(self.b, other.b) x = other.b // g * self.a y = self.b // g * other.a return Fraction(x + y, self.b // g * other.b) return Fraction(self.a + other * self.b, self.b) def __iadd__(self, other): if isinstance(other, Fraction): g = math.gcd(self.b, other.b) self.a *= other.b // g self.a += self.b // g * other.a self.b *= other.b // g else: self.a += other * self.b self._reducion() return self __radd__ = __add__ def __sub__(self, other): if isinstance(other, Fraction): return self.__add__(-other) return self.__add__(-other) def __isub__(self, other): if isinstance(other, Fraction): return self.__iadd__(-other.a, other.b) return self.__iadd__(-other) def __rsub__(self, other): return -self + other def __mul__(self, other): if isinstance(other, Fraction): return Fraction(self.a * other.a, self.b * other.b) else: return Fraction(self.a * other, self.b) def __imul__(self, other): if isinstance(other, Fraction): self.a *= other.a self.b *= other.b else: self.a *= other self._reducion() return self __rmul__ = __mul__ def __floordiv__(self, other): if isinstance(other, Fraction): return self.__mul__(other.inverse()) return Fraction(self.a, self.b * other) def __ifloordiv__(self, other): if isinstance(other, Fraction): return self.__imul__(other.inverse()) self.b *= other self._reducion() return self def __rfloordiv__(self, other): return self.inverse() * other __truediv__ = __floordiv__ __itruediv__ = __ifloordiv__ __rtruediv__ = __rfloordiv__ def __pow__(self, other): if isinstance(other, Fraction): if other.b == 1: return self.__pow__(other.a) raise NotImplementedError return Fraction(self.a**other, self.b**other) def __ipow__(self, other): if isinstance(other, Fraction): if other.b == 1: return self.__ipow__(other.a) raise NotImplementedError self.a **= other self.b **= other return self def __rpow__(self, other): if self.b != 1: raise NotImplementedError return other**self.a def __floor__(self) -> int: return self.a // self.b def __ceil__(self) -> int: return (self.a + self.b - 1) // self.b __int__ = __floor__ def __float__(self): return self.a / self.b def inverse(self): if self.a == 0: raise ZeroDivisionError(f"tring to calcuate inverse of {self.a}/{self.b}") return Fraction(self.b, self.a) def __pos__(self): return Fraction(self.a, self.b) def __neg__(self): return Fraction(-self.a, self.b) def __abs__(self): return Fraction(abs(self.a), self.b) def __eq__(self, other) -> bool: if isinstance(other, Fraction): return self.a == other.a and self.b == other.b return self.a == self.b * other def __gt__(self, other): if isinstance(other, Fraction): return self.a * other.b > other.a * self.b return self.a > self.b * other def __ge__(self, other): if isinstance(other, Fraction): return self.a * other.b >= other.a * self.b return self.a >= self.b * other def __lt__(self, other): if isinstance(other, Fraction): return self.a * other.b < other.a * self.b return self.a < self.b * other def __le__(self, other): if isinstance(other, Fraction): return self.a * other.b <= other.a * self.b return self.a <= self.b * other def __str__(self) -> str: return f"{self.a}/{self.b}" __repr__ = __str__ def __hash__(self) -> int: return hash(self.__str__()) def distance(pa, pb): return sum([(i - j) ** 2 for i, j in zip(pa, pb)]) def islinear(pa, pb, pc): return (pa[0] - pb[0]) * (pa[1] - pc[1]) == (pa[0] - pc[0]) * (pa[1] - pb[1]) def center(x, y): return Fraction((x[0] + y[0]), 2), Fraction((x[1] + y[1]), 2) def circumcenter2(pa, pb, pc): # 外心 x0 = ( (pa[0] ** 2 + pa[1] ** 2) * (pb[1] - pc[1]) + (pb[0] ** 2 + pb[1] ** 2) * (pc[1] - pa[1]) + (pc[0] ** 2 + pc[1] ** 2) * (pa[1] - pb[1]) ) y0 = 2 * ((pb[1] - pc[1]) * (pa[0] - pb[0]) - (pa[1] - pb[1]) * (pb[0] - pc[0])) x1 = ( (pa[0] ** 2 + pa[1] ** 2) * (pb[0] - pc[0]) + (pb[0] ** 2 + pb[1] ** 2) * (pc[0] - pa[0]) + (pc[0] ** 2 + pc[1] ** 2) * (pa[0] - pb[0]) ) y1 = 2 * ((pb[0] - pc[0]) * (pa[1] - pb[1]) - (pa[0] - pb[0]) * (pb[1] - pc[1])) return Fraction(x0, y0), Fraction(x1, y1) if __name__ == "__main__": resolve()