結果
| 問題 |
No.526 フィボナッチ数列の第N項をMで割った余りを求める
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-05-02 22:05:41 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 9 ms / 2,000 ms |
| コード長 | 5,312 bytes |
| コンパイル時間 | 2,135 ms |
| コンパイル使用メモリ | 199,220 KB |
| 最終ジャッジ日時 | 2025-02-21 10:41:53 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 12 |
ソースコード
#include <bits/stdc++.h>
// #include <atcoder/all>
#include <iostream>
#include <iomanip>
#include <math.h>
using namespace std;
// using namespace atcoder;
// using mint = modint998244353;
// using mint = modint1000000007;
using vi = vector<int>;
using vvi = vector<vector<int>>;
using ll = long long;
template <class T> using max_heap = priority_queue<T>;
template <class T> using min_heap = priority_queue<T, vector<T>, greater<>>;
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
#define rep2(i, f, n) for (int i = (int) f; i < (int)(n); i++)
#define repd(i, n, l) for (int i = (int) n; i >= (int) l; i--)
const ll inf = ll(1e9+7);
// from noshi91's library
#include <cstdint>
class runtime_modint {
using u64 = std::uint_fast64_t;
static u64 &mod() {
static u64 mod_ = 0;
return mod_;
}
public:
u64 a;
runtime_modint(const u64 x = 0) : a(x % get_mod()) {}
u64 &value() noexcept { return a; }
const u64 &value() const noexcept { return a; }
runtime_modint operator+(const runtime_modint rhs) const {
return runtime_modint(*this) += rhs;
}
runtime_modint operator-(const runtime_modint rhs) const {
return runtime_modint(*this) -= rhs;
}
runtime_modint operator*(const runtime_modint rhs) const {
return runtime_modint(*this) *= rhs;
}
runtime_modint operator/(const runtime_modint rhs) const {
return runtime_modint(*this) /= rhs;
}
runtime_modint &operator+=(const runtime_modint rhs) {
a += rhs.a;
if (a >= get_mod()) {
a -= get_mod();
}
return *this;
}
runtime_modint &operator-=(const runtime_modint rhs) {
if (a < rhs.a) {
a += get_mod();
}
a -= rhs.a;
return *this;
}
runtime_modint &operator*=(const runtime_modint rhs) {
a = a * rhs.a % get_mod();
return *this;
}
runtime_modint &operator/=(runtime_modint rhs) {
u64 exp = get_mod() - 2;
while (exp) {
if (exp % 2) {
*this *= rhs;
}
rhs *= rhs;
exp /= 2;
}
return *this;
}
static void set_mod(const u64 x) { mod() = x; }
static u64 get_mod() { return mod(); }
};
// from ei1333's library
template< class T >
struct Matrix {
vector< vector< T > > A;
Matrix() {}
Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {}
Matrix(size_t n) : A(n, vector< T >(n, 0)) {};
size_t height() const {
return (A.size());
}
size_t width() const {
return (A[0].size());
}
inline const vector< T > &operator[](int k) const {
return (A.at(k));
}
inline vector< T > &operator[](int k) {
return (A.at(k));
}
static Matrix I(size_t n) {
Matrix mat(n);
for(int i = 0; i < n; i++) mat[i][i] = 1;
return (mat);
}
Matrix &operator+=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
(*this)[i][j] += B[i][j];
return (*this);
}
Matrix &operator-=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
(*this)[i][j] -= B[i][j];
return (*this);
}
Matrix &operator*=(const Matrix &B) {
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
vector< vector< T > > C(n, vector< T >(m, 0));
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
for(int k = 0; k < p; k++)
C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
A.swap(C);
return (*this);
}
Matrix &operator^=(long long k) {
Matrix B = Matrix::I(height());
while(k > 0) {
if(k & 1) B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix &B) const {
return (Matrix(*this) += B);
}
Matrix operator-(const Matrix &B) const {
return (Matrix(*this) -= B);
}
Matrix operator*(const Matrix &B) const {
return (Matrix(*this) *= B);
}
Matrix operator^(const long long k) const {
return (Matrix(*this) ^= k);
}
friend ostream &operator<<(ostream &os, Matrix &p) {
size_t n = p.height(), m = p.width();
for(int i = 0; i < n; i++) {
os << "[";
for(int j = 0; j < m; j++) {
os << p[i][j] << (j + 1 == m ? "]\n" : ",");
}
}
return (os);
}
T determinant() {
Matrix B(*this);
assert(width() == height());
T ret = 1;
for(int i = 0; i < width(); i++) {
int idx = -1;
for(int j = i; j < width(); j++) {
if(B[j][i] != 0) idx = j;
}
if(idx == -1) return (0);
if(i != idx) {
ret *= -1;
swap(B[i], B[idx]);
}
ret *= B[i][i];
T vv = B[i][i];
for(int j = 0; j < width(); j++) {
B[i][j] /= vv;
}
for(int j = i + 1; j < width(); j++) {
T a = B[j][i];
for(int k = 0; k < width(); k++) {
B[j][k] -= B[i][k] * a;
}
}
}
return (ret);
}
};
int main() {
int n, m;
cin >> n >> m;
runtime_modint::set_mod(m);
Matrix<runtime_modint> mat(2);
mat[0][0].a = 1;
mat[0][1].a = 1;
mat[1][0].a = 1;
mat[1][1].a = 0;
mat.operator^=(n-3);
cout << (mat[0][0] + mat[0][1]).a << endl;
return 0;
}