結果
| 問題 |
No.1002 Twotone
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2024-05-03 09:21:52 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
MLE
|
| 実行時間 | - |
| コード長 | 11,561 bytes |
| コンパイル時間 | 229 ms |
| コンパイル使用メモリ | 82,688 KB |
| 実行使用メモリ | 1,032,568 KB |
| 最終ジャッジ日時 | 2024-11-24 08:07:15 |
| 合計ジャッジ時間 | 119,064 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | MLE * 2 |
| other | AC * 10 TLE * 9 MLE * 14 |
ソースコード
from collections import defaultdict
class Graph:
def __init__(self,V,edges=None,graph=None,directed=False,weighted=False,inf=float("inf")):
self.V=V
self.directed=directed
self.weighted=weighted
self.inf=inf
if graph!=None:
self.graph=graph
"""
self.edges=[]
for i in range(self.V):
if self.weighted:
for j,d in self.graph[i]:
if self.directed or not self.directed and i<=j:
self.edges.append((i,j,d))
else:
for j in self.graph[i]:
if self.directed or not self.directed and i<=j:
self.edges.append((i,j))
"""
else:
self.edges=edges
self.graph=[[] for i in range(self.V)]
if weighted:
for i,j,d in self.edges:
self.graph[i].append((j,d))
if not self.directed:
self.graph[j].append((i,d))
else:
for i,j in self.edges:
self.graph[i].append(j)
if not self.directed:
self.graph[j].append(i)
def Centroid(self,root=0):
x=root
parents,size=self.SIV_DFS(x,parents=True,subtree_size=True)
while True:
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==parents[x]:
continue
if size[y]*2>size[root]:
x=y
break
else:
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==parents[x]:
continue
if size[root]<=2*size[y]:
return x,y
return x,None
def Centroid_Decomposition(self,points=False,edges=False,tree=False,linked_point=False):
if points:
cd_points=[None]*self.V
if edges:
cd_edges=[None]*self.V
if tree:
cd_tree=[]*self.V
if linked_point:
cd_linked_point=[None]*self.V
E=self.edges
P=[i for i in range(self.V)]
prev_centroid=None
stack=[(E,P,None,prev_centroid)] if linked_point else [(E,P,prev_centroid)]
while stack:
if linked_point:
E,P,lp,prev_centroid=stack.pop()
else:
E,P,prev_centroid=stack.pop()
if len(P)==1:
centroid=P[0]
if edges:
cd_edges[centroid]=[]
if linked_point:
cd_linked_point[centroid]=lp
if points:
cd_points[centroid]=[centroid]
if tree and prev_centroid!=None:
cd_tree.append((prev_centroid,centroid))
continue
G=Graph(len(P),edges=E,weighted=self.weighted)
centroid,_=G.Centroid()
if tree and prev_centroid!=None:
cd_tree.append((prev_centroid,P[centroid]))
parents,tour=G.SIV_DFS(centroid,parents=True,preorder=True)
dp=[None]*len(P)
EE=[]
PP=[]
if linked_point:
linked_points=[]
for i,x in enumerate(G.graph[centroid]):
if G.weighted:
x,d=x
dp[x]=(i,0)
EE.append([])
PP.append([P[x]])
if linked_point:
linked_points.append(P[x])
for x in tour[1:]:
for y in G.graph[x]:
if G.weighted:
y,d=y
if y==parents[x]:
continue
i,j=dp[x]
jj=len(PP[i])
EE[i].append((j,jj,d) if G.weighted else (j,jj))
PP[i].append(P[y])
dp[y]=(i,jj)
centroid=P[centroid]
if points:
cd_points[centroid]=P
if edges:
cd_edges[centroid]=E
if linked_point:
cd_linked_point[centroid]=lp
if linked_point:
for E,P,lp in zip(EE,PP,linked_points):
stack.append((E,P,lp,centroid))
else:
for E,P in zip(EE,PP):
stack.append((E,P,centroid))
retu=()
if points:
retu+=(cd_points,)
if edges:
retu+=(cd_edges,)
if tree:
retu+=(cd_tree,)
if linked_point:
retu+=(cd_linked_point,)
if len(retu)==1:
retu=retu[0]
return retu
def SIV_DFS(self,s,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,lowlink=False,parents=False,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False):
seen=[False]*self.V
finished=[False]*self.V
if directed_acyclic or cycle_detection or topological_sort:
dag=True
if euler_tour:
et=[]
if linked_components:
lc=[]
if lowlink:
order=[None]*self.V
ll=[None]*self.V
idx=0
if parents or cycle_detection or lowlink or subtree_size:
ps=[None]*self.V
if postorder or topological_sort:
post=[]
if preorder:
pre=[]
if subtree_size:
ss=[1]*self.V
if unweighted_dist or bipartite_graph:
uwd=[self.inf]*self.V
uwd[s]=0
if weighted_dist:
wd=[self.inf]*self.V
wd[s]=0
stack=[(s,0)] if self.weighted else [s]
while stack:
if self.weighted:
x,d=stack.pop()
else:
x=stack.pop()
if not seen[x]:
seen[x]=True
stack.append((x,d) if self.weighted else x)
if euler_tour:
et.append(x)
if linked_components:
lc.append(x)
if lowlink:
order[x]=idx
ll[x]=idx
idx+=1
if preorder:
pre.append(x)
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
stack.append((y,d) if self.weighted else y)
if parents or cycle_detection or lowlink or subtree_size:
ps[y]=x
if unweighted_dist or bipartite_graph:
uwd[y]=uwd[x]+1
if weighted_dist:
wd[y]=wd[x]+d
elif not finished[y]:
if (directed_acyclic or cycle_detection or topological_sort) and dag:
dag=False
if cycle_detection:
cd=(y,x)
elif not finished[x]:
finished[x]=True
if euler_tour:
et.append(~x)
if lowlink:
bl=True
for y in self.graph[x]:
if self.weighted:
y,d=y
if ps[x]==y and bl:
bl=False
continue
ll[x]=min(ll[x],order[y])
if x!=s:
ll[ps[x]]=min(ll[ps[x]],ll[x])
if postorder or topological_sort:
post.append(x)
if subtree_size:
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==ps[x]:
continue
ss[x]+=ss[y]
if bipartite_graph:
bg=[[],[]]
for tpl in self.edges:
x,y=tpl[:2] if self.weighted else tpl
if uwd[x]==self.inf or uwd[y]==self.inf:
continue
if not uwd[x]%2^uwd[y]%2:
bg=False
break
else:
for x in range(self.V):
if uwd[x]==self.inf:
continue
bg[uwd[x]%2].append(x)
retu=()
if bipartite_graph:
retu+=(bg,)
if cycle_detection:
if dag:
cd=[]
else:
y,x=cd
cd=self.Route_Restoration(y,x,ps)
retu+=(cd,)
if directed_acyclic:
retu+=(dag,)
if euler_tour:
retu+=(et,)
if linked_components:
retu+=(lc,)
if lowlink:
retu=(ll,)
if parents:
retu+=(ps,)
if postorder:
retu+=(post,)
if preorder:
retu+=(pre,)
if subtree_size:
retu+=(ss,)
if topological_sort:
if dag:
tp_sort=post[::-1]
else:
tp_sort=[]
retu+=(tp_sort,)
if unweighted_dist:
retu+=(uwd,)
if weighted_dist:
retu+=(wd,)
if len(retu)==1:
retu=retu[0]
return retu
N,K=map(int,input().split())
edges=[]
for i in range(N-1):
u,v,c=map(int,input().split())
u-=1;v-=1
edges.append((u,v,c))
G=Graph(N,edges=edges,weighted=True)
P,E,CD=G.Centroid_Decomposition(points=True,edges=True,tree=True)
CD=Graph(N,edges=CD)
for c in range(N):
if len(P[c])==N:
break
cd_parents=CD.SIV_DFS(c,parents=True)
ans=0
for x in range(N):
child=[y for y in CD.graph[x] if y!=cd_parents[x]]
le=len(P[x])
GG=Graph(le,edges=E[x],weighted=True)
s=P[x].index(x)
parents,tour=GG.SIV_DFS(s,parents=True,preorder=True)
dp=[None]*le
dp[s]=[]
subtree=[None]*le
for i in tour:
for j,d in GG.graph[i]:
if parents[i]==j:
continue
dp[j]=dp[i][:]
if not d in dp[j]:
dp[j].append(d)
if len(dp[j])>=4:
dp[j]=dp[j][:3]
dp[j].sort()
if subtree[i]==None:
subtree[j]=j
else:
subtree[j]=subtree[i]
subtree_lc=[[] for i in range(le)]
for i in range(le):
if len(dp[i])<=2 and subtree[i]!=None:
subtree_lc[subtree[i]].append(i)
cnt2=defaultdict(int)
cnt1=defaultdict(int)
cnt=0
for p in range(le):
for i in subtree_lc[p]:
if len(dp[i])==2:
ans+=cnt2[tuple(dp[i])]
ans+=cnt2[tuple(dp[i][:1])]
ans+=cnt2[tuple(dp[i][1:])]
elif len(dp[i])==1:
ans+=cnt1[dp[i][0]]+cnt-cnt2[(dp[i][0],)]
for i in subtree_lc[p]:
cnt2[tuple(dp[i])]+=1
if len(dp[i])==2:
for j in dp[i]:
cnt1[j]+=1
elif len(dp[i])==1:
cnt+=1
for i in range(le):
if dp[i]!=None and len(dp[i])==2:
ans+=1
print(ans)
vwxyz