結果

問題 No.1002 Twotone
ユーザー vwxyzvwxyz
提出日時 2024-05-03 09:24:13
言語 PyPy3
(7.3.15)
結果
MLE  
実行時間 -
コード長 11,638 bytes
コンパイル時間 163 ms
コンパイル使用メモリ 82,396 KB
実行使用メモリ 533,504 KB
最終ジャッジ日時 2024-05-03 09:24:41
合計ジャッジ時間 13,342 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 46 ms
57,692 KB
testcase_01 AC 42 ms
58,128 KB
testcase_02 AC 41 ms
58,504 KB
testcase_03 AC 4,418 ms
426,576 KB
testcase_04 MLE -
testcase_05 TLE -
testcase_06 AC 65 ms
72,404 KB
testcase_07 AC 3,401 ms
380,520 KB
testcase_08 TLE -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

from collections import defaultdict

class Graph:
    def __init__(self,V,edges=None,graph=None,directed=False,weighted=False,inf=float("inf")):
        self.V=V
        self.directed=directed
        self.weighted=weighted
        self.inf=inf
        if graph!=None:
            self.graph=graph
            """
            self.edges=[]
            for i in range(self.V):
                if self.weighted:
                    for j,d in self.graph[i]:
                        if self.directed or not self.directed and i<=j:
                            self.edges.append((i,j,d))
                else:
                    for j in self.graph[i]:
                        if self.directed or not self.directed and i<=j:
                            self.edges.append((i,j))
            """
        else:
            self.edges=edges
            self.graph=[[] for i in range(self.V)]
            if weighted:
                for i,j,d in self.edges:
                    self.graph[i].append((j,d))
                    if not self.directed:
                        self.graph[j].append((i,d))
            else:
                for i,j in self.edges:
                    self.graph[i].append(j)
                    if not self.directed:
                        self.graph[j].append(i)

    def Centroid(self,root=0):
        x=root
        parents,size=self.SIV_DFS(x,parents=True,subtree_size=True)
        while True:
            for y in self.graph[x]:
                if self.weighted:
                    y,d=y
                if y==parents[x]:
                    continue
                if size[y]*2>size[root]:
                    x=y
                    break
            else:
                for y in self.graph[x]:
                    if self.weighted:
                        y,d=y
                    if y==parents[x]:
                        continue
                    if size[root]<=2*size[y]:
                        return x,y
                return x,None

    def Centroid_Decomposition(self,points=False,edges=False,tree=False,linked_point=False):
        if points:
            cd_points=[None]*self.V
        if edges:
            cd_edges=[None]*self.V
        if tree:
            cd_tree=[]*self.V
        if linked_point:
            cd_linked_point=[None]*self.V
        E=self.edges
        P=[i for i in range(self.V)]
        prev_centroid=None
        stack=[(E,P,None,prev_centroid)] if linked_point else [(E,P,prev_centroid)]
        while stack:
            if linked_point:
                E,P,lp,prev_centroid=stack.pop()
            else:
                E,P,prev_centroid=stack.pop()
            if len(P)==1:
                centroid=P[0]
                if edges:
                    cd_edges[centroid]=[]
                if linked_point:
                    cd_linked_point[centroid]=lp
                if points:
                    cd_points[centroid]=[centroid]
                if tree and prev_centroid!=None:
                    cd_tree.append((prev_centroid,centroid))
                continue
            G=Graph(len(P),edges=E,weighted=self.weighted)
            centroid,_=G.Centroid()
            if tree and prev_centroid!=None:
                cd_tree.append((prev_centroid,P[centroid]))
            parents,tour=G.SIV_DFS(centroid,parents=True,preorder=True)
            dp=[None]*len(P)
            EE=[]
            PP=[]
            if linked_point:
                linked_points=[]
            for i,x in enumerate(G.graph[centroid]):
                if G.weighted:
                    x,d=x
                dp[x]=(i,0)
                EE.append([])
                PP.append([P[x]])
                if linked_point:
                    linked_points.append(P[x])
            for x in tour[1:]:
                for y in G.graph[x]:
                    if G.weighted:
                        y,d=y
                    if y==parents[x]:
                        continue
                    i,j=dp[x]
                    jj=len(PP[i])
                    EE[i].append((j,jj,d) if G.weighted else (j,jj))
                    PP[i].append(P[y])
                    dp[y]=(i,jj)
            centroid=P[centroid]
            if points:
                cd_points[centroid]=P
            if edges:
                cd_edges[centroid]=E
            if linked_point:
                cd_linked_point[centroid]=lp
            if linked_point:
                for E,P,lp in zip(EE,PP,linked_points):
                    stack.append((E,P,lp,centroid))
            else:
                for E,P in zip(EE,PP):
                    stack.append((E,P,centroid))
        retu=()
        if points:
            retu+=(cd_points,)
        if edges:
            retu+=(cd_edges,)
        if tree:
            retu+=(cd_tree,)
        if linked_point:
            retu+=(cd_linked_point,)
        if len(retu)==1:
            retu=retu[0]
        return retu

    def SIV_DFS(self,s,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,lowlink=False,parents=False,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False):
        seen=[False]*self.V
        finished=[False]*self.V
        if directed_acyclic or cycle_detection or topological_sort:
            dag=True
        if euler_tour:
            et=[]
        if linked_components:
            lc=[]
        if lowlink:
            order=[None]*self.V
            ll=[None]*self.V
            idx=0
        if parents or cycle_detection or lowlink or subtree_size:
            ps=[None]*self.V
        if postorder or topological_sort:
            post=[]
        if preorder:
            pre=[]
        if subtree_size:
            ss=[1]*self.V
        if unweighted_dist or bipartite_graph:
            uwd=[self.inf]*self.V
            uwd[s]=0
        if weighted_dist:
            wd=[self.inf]*self.V
            wd[s]=0
        stack=[(s,0)] if self.weighted else [s]
        while stack:
            if self.weighted:
                x,d=stack.pop()
            else:
                x=stack.pop()
            if not seen[x]:
                seen[x]=True
                stack.append((x,d) if self.weighted else x)
                if euler_tour:
                    et.append(x)
                if linked_components:
                    lc.append(x)
                if lowlink:
                    order[x]=idx
                    ll[x]=idx
                    idx+=1
                if preorder:
                    pre.append(x)
                for y in self.graph[x]:
                    if self.weighted:
                        y,d=y
                    if not seen[y]:
                        stack.append((y,d) if self.weighted else y)
                        if parents or cycle_detection or lowlink or subtree_size:
                            ps[y]=x
                        if unweighted_dist or bipartite_graph:
                            uwd[y]=uwd[x]+1
                        if weighted_dist:
                            wd[y]=wd[x]+d
                    elif not finished[y]:
                        if (directed_acyclic or cycle_detection or topological_sort) and dag:
                            dag=False
                            if cycle_detection:
                                cd=(y,x)
            elif not finished[x]:
                finished[x]=True
                if euler_tour:
                    et.append(~x)
                if lowlink:
                    bl=True
                    for y in self.graph[x]:
                        if self.weighted:
                            y,d=y
                        if ps[x]==y and bl:
                            bl=False
                            continue
                        ll[x]=min(ll[x],order[y])
                    if x!=s:
                        ll[ps[x]]=min(ll[ps[x]],ll[x])
                if postorder or topological_sort:
                    post.append(x)
                if subtree_size:
                    for y in self.graph[x]:
                        if self.weighted:
                            y,d=y
                        if y==ps[x]:
                            continue
                        ss[x]+=ss[y]
        if bipartite_graph:
            bg=[[],[]]
            for tpl in self.edges:
                x,y=tpl[:2] if self.weighted else tpl
                if uwd[x]==self.inf or uwd[y]==self.inf:
                    continue
                if not uwd[x]%2^uwd[y]%2:
                    bg=False
                    break
            else:
                for x in range(self.V):
                    if uwd[x]==self.inf:
                        continue
                    bg[uwd[x]%2].append(x)
        retu=()
        if bipartite_graph:
            retu+=(bg,)
        if cycle_detection:
            if dag:
                cd=[]
            else:
                y,x=cd
                cd=self.Route_Restoration(y,x,ps)
            retu+=(cd,)
        if directed_acyclic:
            retu+=(dag,)
        if euler_tour:
            retu+=(et,)
        if linked_components:
            retu+=(lc,)
        if lowlink:
            retu=(ll,)
        if parents:
            retu+=(ps,)
        if postorder:
            retu+=(post,)
        if preorder:
            retu+=(pre,)
        if subtree_size:
            retu+=(ss,)
        if topological_sort:
            if dag:
                tp_sort=post[::-1]
            else:
                tp_sort=[]
            retu+=(tp_sort,)
        if unweighted_dist:
            retu+=(uwd,)
        if weighted_dist:
            retu+=(wd,)
        if len(retu)==1:
            retu=retu[0]
        return retu

N,K=map(int,input().split())
edges=[]
for i in range(N-1):
    u,v,c=map(int,input().split())
    u-=1;v-=1;c-=1
    edges.append((u,v,c))
G=Graph(N,edges=edges,weighted=True)
P,E,CD=G.Centroid_Decomposition(points=True,edges=True,tree=True)
CD=Graph(N,edges=CD)
for c in range(N):
    if len(P[c])==N:
        break
cd_parents=CD.SIV_DFS(c,parents=True)
ans=0
cnt1=[0]*K
for x in range(N):
    memo1=[]
    child=[y for y in CD.graph[x] if y!=cd_parents[x]]
    le=len(P[x])
    GG=Graph(le,edges=E[x],weighted=True)
    s=P[x].index(x)
    parents,tour=GG.SIV_DFS(s,parents=True,preorder=True)
    dp=[None]*le
    dp[s]=[]
    subtree=[None]*le
    for i in tour:
        for j,d in GG.graph[i]:
            if parents[i]==j:
                continue
            dp[j]=dp[i][:]
            if not d in dp[j]:
                dp[j].append(d)
            if len(dp[j])>=4:
                dp[j]=dp[j][:3]
            dp[j].sort()
            if subtree[i]==None:
                subtree[j]=j
            else:
                subtree[j]=subtree[i]
    subtree_lc=[[] for i in range(le)]
    for i in range(le):
        if len(dp[i])<=2 and subtree[i]!=None:
            subtree_lc[subtree[i]].append(i)
    cnt2=defaultdict(int)
    cnt=0
    for p in range(le):
        for i in subtree_lc[p]:
            if len(dp[i])==2:
                ans+=cnt2[tuple(dp[i])]
                ans+=cnt2[tuple(dp[i][:1])]
                ans+=cnt2[tuple(dp[i][1:])]
            elif len(dp[i])==1:
                ans+=cnt1[dp[i][0]]+cnt-cnt2[(dp[i][0],)]
        for i in subtree_lc[p]:
            cnt2[tuple(dp[i])]+=1
            if len(dp[i])==2:
                for j in dp[i]:
                    cnt1[j]+=1
                    memo1.append(j)
            elif len(dp[i])==1:
                cnt+=1
    for j in memo1:
        cnt1[j]=0
    for i in range(le):
        if dp[i]!=None and len(dp[i])==2:
            ans+=1
print(ans)
0