結果
問題 | No.1414 東大文系数学2021第2問改 |
ユーザー | vwxyz |
提出日時 | 2024-05-03 15:41:06 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 2,795 bytes |
コンパイル時間 | 173 ms |
コンパイル使用メモリ | 82,176 KB |
実行使用メモリ | 552,052 KB |
最終ジャッジ日時 | 2024-11-24 17:44:10 |
合計ジャッジ時間 | 35,845 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 24 TLE * 3 |
ソースコード
import bisectimport copyimport decimalimport fractionsimport functoolsimport heapqimport itertoolsimport mathimport randomimport sysfrom collections import Counter,deque,defaultdictfrom functools import lru_cache,reducefrom heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_maxdef _heappush_max(heap,item):heap.append(item)heapq._siftdown_max(heap, 0, len(heap)-1)def _heappushpop_max(heap, item):if heap and item < heap[0]:item, heap[0] = heap[0], itemheapq._siftup_max(heap, 0)return itemfrom math import degrees, gcd as GCDread=sys.stdin.readreadline=sys.stdin.readlinereadlines=sys.stdin.readlinesdef Extended_Euclid(n,m):stack=[]while m:stack.append((n,m))n,m=m,n%mif n>=0:x,y=1,0else:x,y=-1,0for i in range(len(stack)-1,-1,-1):n,m=stack[i]x,y=y,x-(n//m)*yreturn x,yclass MOD:def __init__(self,p,e=1):self.p=pself.e=eself.mod=self.p**self.edef Pow(self,a,n):a%=self.modif n>=0:return pow(a,n,self.mod)else:assert math.gcd(a,self.mod)==1x=Extended_Euclid(a,self.mod)[0]return pow(x,-n,self.mod)def Build_Fact(self,N):assert N>=0self.factorial=[1]self.cnt=[0]*(N+1)for i in range(1,N+1):ii=iself.cnt[i]=self.cnt[i-1]while ii%self.p==0:ii//=self.pself.cnt[i]+=1self.factorial.append((self.factorial[-1]*ii)%self.mod)self.factorial_inve=[None]*(N+1)self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)for i in range(N-1,-1,-1):ii=i+1while ii%self.p==0:ii//=self.pself.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.moddef Fact(self,N):return self.factorial[N]*pow(self.p,self.cnt[N],self.mod)%self.moddef Fact_Inve(self,N):if self.cnt[N]:return Nonereturn self.factorial_inve[N]def Comb(self,N,K,divisible_count=False):if K<0 or K>N:return 0retu=self.factorial[N]*self.factorial_inve[K]*self.factorial_inve[N-K]%self.modcnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]if divisible_count:return retu,cntelse:retu*=pow(self.p,cnt,self.mod)retu%=self.modreturn retuN,M,K=map(int,readline().split())mod=998244353MD=MOD(mod)MD.Build_Fact(N)ans=0for i in range(1,min(M//K,N-M+1)+1):if i%2==1:ans+=MD.Comb(N-i*K,N-M)*MD.Comb(N-M+1,i)else:ans-=MD.Comb(N-i*K,N-M)*MD.Comb(N-M+1,i)ans%=modprint(ans)