結果
| 問題 |
No.907 Continuous Kadomatu
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2024-05-03 23:06:34 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 5,523 bytes |
| コンパイル時間 | 85 ms |
| コンパイル使用メモリ | 13,568 KB |
| 実行使用メモリ | 24,192 KB |
| 最終ジャッジ日時 | 2024-11-25 04:36:40 |
| 合計ジャッジ時間 | 44,384 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 13 TLE * 12 |
ソースコード
def Compress(lst):
decomp=sorted(list(set(lst)))
comp={x:i for i,x in enumerate(decomp)}
return comp,decomp
def Extended_Euclid(n,m):
stack=[]
while m:
stack.append((n,m))
n,m=m,n%m
if n>=0:
x,y=1,0
else:
x,y=-1,0
for i in range(len(stack)-1,-1,-1):
n,m=stack[i]
x,y=y,x-(n//m)*y
return x,y
class MOD:
def __init__(self,p,e=None):
self.p=p
self.e=e
if self.e==None:
self.mod=self.p
else:
self.mod=self.p**self.e
def Pow(self,a,n):
a%=self.mod
if n>=0:
return pow(a,n,self.mod)
else:
#assert math.gcd(a,self.mod)==1
x=Extended_Euclid(a,self.mod)[0]
return pow(x,-n,self.mod)
def Build_Fact(self,N):
assert N>=0
self.factorial=[1]
if self.e==None:
for i in range(1,N+1):
self.factorial.append(self.factorial[-1]*i%self.mod)
else:
self.cnt=[0]*(N+1)
for i in range(1,N+1):
self.cnt[i]=self.cnt[i-1]
ii=i
while ii%self.p==0:
ii//=self.p
self.cnt[i]+=1
self.factorial.append(self.factorial[-1]*ii%self.mod)
self.factorial_inve=[None]*(N+1)
self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
for i in range(N-1,-1,-1):
ii=i+1
while ii%self.p==0:
ii//=self.p
self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod
def Build_Inverse(self,N):
self.inverse=[None]*(N+1)
assert self.p>N
self.inverse[1]=1
for n in range(2,N+1):
if n%self.p==0:
continue
a,b=divmod(self.mod,n)
self.inverse[n]=(-a*self.inverse[b])%self.mod
def Inverse(self,n):
return self.inverse[n]
def Fact(self,N):
if N<0:
return 0
retu=self.factorial[N]
if self.e!=None and self.cnt[N]:
retu*=pow(self.p,self.cnt[N],self.mod)%self.mod
retu%=self.mod
return retu
def Fact_Inve(self,N):
if self.e!=None and self.cnt[N]:
return None
return self.factorial_inve[N]
def Comb(self,N,K,divisible_count=False):
if K<0 or K>N:
return 0
retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod
if self.e!=None:
cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
if divisible_count:
return retu,cnt
else:
retu*=pow(self.p,cnt,self.mod)
retu%=self.mod
return retu
class Cumsum:
def __init__(self,lst,mod=0):
self.N=len(lst)
self.mod=mod
self.cumsum=[0]*(self.N+1)
self.cumsum[0]=0
for i in range(1,self.N+1):
self.cumsum[i]=self.cumsum[i-1]+lst[i-1]
if self.mod:
self.cumsum[i]%=self.mod
def __getitem__(self,i):
if type(i)==int:
if 0<=i<self.N:
a,b=i,i+1
elif -self.N<=i<0:
a,b=i+self.N,i+self.N+1
else:
raise IndexError('list index out of range')
else:
a,b=i.start,i.stop
if a==None or a<-self.N:
a=0
elif self.N<=a:
a=self.N
elif a<0:
a+=self.N
if b==None or self.N<=b:
b=self.N
elif b<-self.N:
b=0
elif b<0:
b+=self.N
s=self.cumsum[b]-self.cumsum[a]
if self.mod:
s%=self.mod
return s
def __setitem__(self,i,x):
if -self.N<=i<0:
i+=self.N
elif not 0<=i<self.N:
raise IndexError('list index out of range')
self.cumsum[i+1]=self.cumsum[i]+x
if self.mod:
self.cumsum[i+1]%=self.mod
def __len__(self):
return self.N
def __str__(self):
lst=[self.cumsum[i+1]-self.cumsum[i] for i in range(self.N)]
if self.mod:
for i in range(self.N):
lst[i]%=self.mod
return "["+", ".join(map(str,lst))+"]"
N=int(input())
A,B=[],[]
for i in range(N):
a,b=map(int,input().split())
A.append(a)
B.append(b)
mod=10**9+7
MD=MOD(mod)
MD.Build_Fact(N)
dp=[1]
cnt=[1]
for le in range(1,N+1):
cnt.append(sum(dp)%mod)
prev=dp
dp=[0]*(1+le)
for i in range(le):
for j in range(le+1):
if le%2 and j<=i or le%2==0 and i<j:
dp[j]+=prev[i]
dp[j]%=mod
inf=1<<30
comp,decomp=Compress(A+B+[inf])
le=len(comp)-1
dp=[[0]*le for i in range(N+1)]
dp[0][le-1]=1
dp[0]=Cumsum(dp[0],mod=mod)
BA=[b-a for a,b in zip(A,B)]
BA_inve=[MD.Pow(b-a,-1) for a,b in zip(A,B)]
for r in range(1,N+1):
for x in range(le-1):
p=1
for l in range(r-1,-1,-1):
d=decomp[x+1]-decomp[x]
if max(decomp[x],A[l])<min(decomp[x+1],B[l]):
p*=BA_inve[l]*d
p%=mod
else:
p=0
if l%2:
dp[r][x]+=dp[l][:x]*cnt[r-l]%mod*MD.Fact_Inve(r-l)%mod*p%mod
else:
dp[r][x]+=dp[l][x+1:]*cnt[r-l]%mod*MD.Fact_Inve(r-l)%mod*p%mod
dp[r][x]%=mod
dp[r]=Cumsum(dp[r],mod=mod)
ans=dp[-1][:]
print(ans)
vwxyz