結果
| 問題 |
No.754 畳み込みの和
|
| コンテスト | |
| ユーザー |
ngtkana
|
| 提出日時 | 2024-05-05 22:10:25 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 20,670 bytes |
| コンパイル時間 | 14,166 ms |
| コンパイル使用メモリ | 384,412 KB |
| 実行使用メモリ | 99,472 KB |
| 最終ジャッジ日時 | 2024-11-27 23:33:20 |
| 合計ジャッジ時間 | 36,086 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | TLE * 3 |
コンパイルメッセージ
warning: unused import: `factorial::Factorial`
--> src/main.rs:421:13
|
421 | pub use factorial::Factorial;
| ^^^^^^^^^^^^^^^^^^^^
|
= note: `#[warn(unused_imports)]` on by default
warning: unused import: `fourier::any_mod_fps_mul`
--> src/main.rs:422:13
|
422 | pub use fourier::any_mod_fps_mul;
| ^^^^^^^^^^^^^^^^^^^^^^^^
warning: unused import: `fourier::fft`
--> src/main.rs:423:13
|
423 | pub use fourier::fft;
| ^^^^^^^^^^^^
warning: unused import: `fourier::fps_mul`
--> src/main.rs:424:13
|
424 | pub use fourier::fps_mul;
| ^^^^^^^^^^^^^^^^
warning: unused import: `fourier::ifft`
--> src/main.rs:425:13
|
425 | pub use fourier::ifft;
| ^^^^^^^^^^^^^
ソースコード
use proconio::input;
use std::ops::Add;
use std::ops::Mul;
use std::ops::Sub;
type Fp = fp::Fp<1000000007>;
const CHUNK_SIZE: usize = 16;
fn main() {
input! {
n: usize,
a: [u64; n + 1],
b: [u64; n + 1],
}
let a = a.iter().map(|&x| Fp::new(x)).collect::<Vec<_>>();
let b = b.iter().map(|&x| Fp::new(x)).collect::<Vec<_>>();
let c = from_chunks(karatsuba(into_chunks(a), into_chunks(b)));
let ans = c[..=n].iter().sum::<Fp>();
println!("{}", ans);
}
trait Zero {
fn zero() -> Self;
}
impl Zero for Fp {
fn zero() -> Self {
Fp::new(0)
}
}
fn into_chunks(a: Vec<Fp>) -> Vec<PolyT> {
let mut res = vec![];
for i in 0..a.len() {
let mut chunk = [Fp::zero(); CHUNK_SIZE];
for j in 0..CHUNK_SIZE {
if i * CHUNK_SIZE + j < a.len() {
chunk[j] = a[i * CHUNK_SIZE + j];
}
}
res.push(PolyT(chunk));
}
res
}
fn from_chunks(c: Vec<PolyU>) -> Vec<Fp> {
let mut res = vec![];
for i in 0..c.len() {
for j in 0..CHUNK_SIZE {
res.push(c[i].0[j]);
}
}
res
}
fn karatsuba<T, U>(mut a: Vec<T>, mut b: Vec<T>) -> Vec<U>
where
T: Clone + Copy + Mul<Output = U> + Add<Output = T> + Sub<Output = T> + Zero,
U: Clone + Copy + Add<Output = U> + Sub<Output = U> + Zero,
{
let len = a.len() + b.len() - 1;
let n = a.len().max(b.len()).max(2).next_power_of_two();
a.resize(n, T::zero());
b.resize(n, T::zero());
a.reserve(2 * n);
b.reserve(2 * n);
let mut c = Vec::with_capacity(2 * n);
let mut tertiary = n * n;
while tertiary != 0 {
for size in (0..(tertiary.trailing_zeros() as usize) / 2)
.rev()
.map(|i| 1 << i)
{
for (i, j) in (a.len() - 2 * size..).zip(a.len() - size..a.len()) {
a.push(a[i] + a[j]);
b.push(b[i] + b[j]);
}
}
c.extend([a.pop().unwrap() * b.pop().unwrap(), U::zero()]);
tertiary -= 1;
for i in 0.. {
if tertiary >> (2 * i) & 3 != 3 {
break;
}
tertiary ^= 1 << (2 * i);
}
for size in (0..((tertiary.trailing_zeros() as usize) / 2).min(n.trailing_zeros() as usize))
.map(|i| 1 << i)
{
for ((i, j), k) in (c.len() - 6 * size..)
.zip(c.len() - 4 * size..)
.zip(c.len() - 2 * size..c.len())
{
let (x, y, z) = (c[i], c[j], c[k]);
(c[i], c[j], c[k]) = (z, y, x - y - z);
}
for (i, j) in (c.len() - 5 * size..).zip(c.len() - 2 * size..c.len()) {
c[i] = c[i] + c[j];
}
c.truncate(c.len() - 2 * size);
}
}
c.truncate(len);
c
}
#[derive(Clone, Copy)]
struct PolyT([Fp; CHUNK_SIZE]);
impl Add for PolyT {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
let mut res = PolyT([Fp::zero(); CHUNK_SIZE]);
for i in 0..CHUNK_SIZE {
res.0[i] = self.0[i] + rhs.0[i];
}
res
}
}
impl Sub for PolyT {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
let mut res = PolyT([Fp::zero(); CHUNK_SIZE]);
for i in 0..CHUNK_SIZE {
res.0[i] = self.0[i] - rhs.0[i];
}
res
}
}
#[derive(Clone, Copy)]
struct PolyU([Fp; CHUNK_SIZE * 2]);
impl Zero for PolyU {
fn zero() -> Self {
PolyU([Fp::zero(); CHUNK_SIZE * 2])
}
}
impl Zero for PolyT {
fn zero() -> Self {
PolyT([Fp::zero(); CHUNK_SIZE])
}
}
impl Mul for PolyT {
type Output = PolyU;
fn mul(self, rhs: Self) -> Self::Output {
let mut res = PolyU([Fp::zero(); CHUNK_SIZE * 2]);
for i in 0..CHUNK_SIZE {
for j in 0..CHUNK_SIZE {
res.0[i + j] += self.0[i] * rhs.0[j];
}
}
res
}
}
impl Add for PolyU {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
let mut res = PolyU([Fp::zero(); CHUNK_SIZE * 2]);
for i in 0..CHUNK_SIZE * 2 {
res.0[i] = self.0[i] + rhs.0[i];
}
res
}
}
impl Sub for PolyU {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
let mut res = PolyU([Fp::zero(); CHUNK_SIZE * 2]);
for i in 0..CHUNK_SIZE * 2 {
res.0[i] = self.0[i] - rhs.0[i];
}
res
}
}
// fp {{{
// https://ngtkana.github.io/ac-adapter-rs/fp/index.html
#[allow(dead_code)]
mod fp {
mod ext_gcd {
pub(crate) fn mod_inv<const P: u64>(x: u64) -> u64 {
debug_assert!(P % 2 == 1);
debug_assert!(P < 1 << 31);
debug_assert!(x < P);
mod_inv_signed(x as i64, P as i64) as u64
}
fn mod_inv_signed(a: i64, m: i64) -> i64 {
debug_assert!(a > 0);
debug_assert!(m > 0);
if a == 1 {
return 1;
}
m + (1 - m * mod_inv_signed(m % a, a)) / a
}
}
mod factorial {
use super::Fp;
use std::ops::Index;
pub struct Factorial<const P: u64> {
fact: Vec<Fp<P>>,
inv_fact: Vec<Fp<P>>,
}
impl<const P: u64> Factorial<P> {
pub fn new(length: usize) -> Self {
let mut fact = vec![Fp::<P>::new(1); length + 1];
let mut inv_fact = vec![Fp::<P>::new(1); length + 1];
for i in 1..=length {
fact[i] = fact[i - 1] * Fp::<P>::new(i as u64);
}
inv_fact[length] = fact[length].inv();
for i in (1..=length).rev() {
inv_fact[i - 1] = inv_fact[i] * Fp::<P>::new(i as u64);
}
Self { fact, inv_fact }
}
pub fn fact(&self, n: usize) -> Fp<P> {
self.fact[n]
}
pub fn inv_fact(&self, n: usize) -> Fp<P> {
self.inv_fact[n]
}
pub fn perm(&self, n: usize, k: usize) -> Fp<P> {
self.fact[n] * self.inv_fact[n - k]
}
pub fn comb(&self, n: usize, k: usize) -> Fp<P> {
self.fact[n] * self.inv_fact[n - k] * self.inv_fact[k]
}
pub fn binom(&self, n: usize, k: usize) -> Fp<P> {
self.comb(n, k)
}
pub fn comb_or_zero(&self, n: usize, k: isize) -> Fp<P> {
if k < 0 || k as usize > n {
Fp::<P>::new(0)
} else {
self.comb(n, k as usize)
}
}
pub fn comb_with_reputation(&self, n: usize, k: usize) -> Fp<P> {
assert!(n > 0 || k > 0);
self.comb(n + k - 1, k)
}
}
impl<const P: u64> Index<usize> for Factorial<P> {
type Output = Fp<P>;
fn index(&self, index: usize) -> &Self::Output {
&self.fact[index]
}
}
}
mod fourier {
use super::mod_inv;
use super::Fp;
use super::PrimitiveRoot;
const P1: u64 = 924844033;
const P2: u64 = 998244353;
const P3: u64 = 1012924417;
type F1 = Fp<P1>;
type F2 = Fp<P2>;
type F3 = Fp<P3>;
pub fn fps_mul<const P: u64>(a: impl AsRef<[Fp<P>]>, b: impl AsRef<[Fp<P>]>) -> Vec<Fp<P>>
where
(): PrimitiveRoot<P>,
{
let a = a.as_ref();
let b = b.as_ref();
if a.is_empty() || b.is_empty() {
return vec![];
}
let mut a = a.to_vec();
let mut b = b.to_vec();
let n = a.len() + b.len() - 1;
let len = n.next_power_of_two();
a.resize(len, Fp::new(0));
b.resize(len, Fp::new(0));
fft(&mut a);
fft(&mut b);
for (a, b) in a.iter_mut().zip(b.iter()) {
*a *= *b;
}
ifft(&mut a);
a.truncate(n);
a
}
pub fn any_mod_fps_mul<const P: u64>(a: &[Fp<P>], b: &[Fp<P>]) -> Vec<Fp<P>> {
let v1 = fps_mul(
a.iter().map(|&x| F1::new(x.value())).collect::<Vec<_>>(),
b.iter().map(|&x| F1::new(x.value())).collect::<Vec<_>>(),
);
let v2 = fps_mul(
a.iter().map(|&x| F2::new(x.value())).collect::<Vec<_>>(),
b.iter().map(|&x| F2::new(x.value())).collect::<Vec<_>>(),
);
let v3 = fps_mul(
a.iter().map(|&x| F3::new(x.value())).collect::<Vec<_>>(),
b.iter().map(|&x| F3::new(x.value())).collect::<Vec<_>>(),
);
v1.into_iter()
.zip(v2)
.zip(v3)
.map(|((e1, e2), e3)| garner(e1, e2, e3))
.collect::<Vec<_>>()
}
pub fn fft<const P: u64>(f: &mut [Fp<P>])
where
(): PrimitiveRoot<P>,
{
let n = f.len();
assert!(n.is_power_of_two());
assert!((P - 1) % n as u64 == 0);
let mut root = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / f.len() as u64);
let fourth = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / 4);
let mut fft_len = n;
while 4 <= fft_len {
let quarter = fft_len / 4;
for f in f.chunks_mut(fft_len) {
let mut c = Fp::new(1);
for (((i, j), k), l) in (0..)
.zip(quarter..)
.zip(quarter * 2..)
.zip(quarter * 3..)
.take(quarter)
{
let c2 = c * c;
let x = f[i] + f[k];
let y = f[j] + f[l];
let z = f[i] - f[k];
let w = fourth * (f[j] - f[l]);
f[i] = x + y;
f[j] = c2 * (x - y);
f[k] = c * (z + w);
f[l] = c2 * c * (z - w);
c *= root;
}
}
root *= root;
root *= root;
fft_len = quarter;
}
if fft_len == 2 {
for f in f.chunks_mut(2) {
let x = f[0];
let y = f[1];
f[0] = x + y;
f[1] = x - y;
}
}
}
pub fn ifft<const P: u64>(f: &mut [Fp<P>])
where
(): PrimitiveRoot<P>,
{
let n = f.len();
assert!(n.is_power_of_two());
let root = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / f.len() as u64);
let mut roots = std::iter::successors(Some(root.inv()), |x| Some(x * x))
.take(n.trailing_zeros() as usize + 1)
.collect::<Vec<_>>();
roots.reverse();
let fourth = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / 4).inv();
let mut quarter = 1_usize;
if n.trailing_zeros() % 2 == 1 {
for f in f.chunks_mut(2) {
let x = f[0];
let y = f[1];
f[0] = x + y;
f[1] = x - y;
}
quarter = 2;
}
while quarter != n {
let fft_len = quarter * 4;
let root = roots[fft_len.trailing_zeros() as usize];
for f in f.chunks_mut(fft_len) {
let mut c = Fp::new(1);
for (((i, j), k), l) in (0..)
.zip(quarter..)
.zip(quarter * 2..)
.zip(quarter * 3..)
.take(quarter)
{
let c2 = c * c;
let x = f[i] + c2 * f[j];
let y = f[i] - c2 * f[j];
let z = c * (f[k] + c2 * f[l]);
let w = fourth * c * (f[k] - c2 * f[l]);
f[i] = x + z;
f[j] = y + w;
f[k] = x - z;
f[l] = y - w;
c *= root;
}
}
quarter = fft_len;
}
let d = Fp::from(f.len()).inv();
f.iter_mut().for_each(|x| *x *= d);
}
fn garner<const P: u64>(x1: Fp<P1>, x2: Fp<P2>, x3: Fp<P3>) -> Fp<P> {
let (x1, x2, x3) = (x1.value(), x2.value(), x3.value());
let x2 = ((x2 + (P2 - x1)) * mod_inv::<P2>(P1)) % P2;
let x3 =
(((x3 + (P3 - x1)) * mod_inv::<P3>(P1) % P3 + (P3 - x2)) * mod_inv::<P3>(P2)) % P3;
Fp::new(x1 + P1 * (x2 + P2 * x3 % P))
}
}
use ext_gcd::mod_inv;
pub use factorial::Factorial;
pub use fourier::any_mod_fps_mul;
pub use fourier::fft;
pub use fourier::fps_mul;
pub use fourier::ifft;
use std::iter::Product;
use std::iter::Sum;
use std::mem::swap;
use std::ops::Add;
use std::ops::AddAssign;
use std::ops::Div;
use std::ops::DivAssign;
use std::ops::Mul;
use std::ops::MulAssign;
use std::ops::Neg;
use std::ops::Sub;
use std::ops::SubAssign;
#[macro_export]
macro_rules! fp {
($value:expr) => {
$crate::fp::Fp::from($value)
};
($value:expr; mod $p:expr) => {
$crate::fp::Fp::<$p>::from($value)
};
}
pub trait PrimitiveRoot<const P: u64> {
const VALUE: Fp<P>;
}
impl PrimitiveRoot<998244353> for () {
const VALUE: Fp<998244353> = Fp::new(3);
}
impl PrimitiveRoot<1012924417> for () {
const VALUE: Fp<1012924417> = Fp::new(5);
}
impl PrimitiveRoot<924844033> for () {
const VALUE: Fp<924844033> = Fp::new(5);
}
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct Fp<const P: u64> {
value: u64,
}
impl<const P: u64> Fp<P> {
pub const fn new(value: u64) -> Self {
Self { value: value % P }
}
pub const fn value(self) -> u64 {
self.value
}
pub fn inv(self) -> Self {
Self {
value: mod_inv::<P>(self.value),
}
}
pub fn pow(self, mut exp: u64) -> Self {
let mut result = Self::new(1);
let mut base = self;
while exp > 0 {
if exp & 1 == 1 {
result *= base;
}
base *= base;
exp >>= 1;
}
result
}
pub fn sign(pow: usize) -> Self {
Self::new(if pow % 2 == 0 { 1 } else { P - 1 })
}
}
impl<const P: u64> std::fmt::Debug for Fp<P> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
pub fn berlekamp_massey_fp(a: i64, p: i64) -> [i64; 2] {
let mut u0 = 0_i64;
let mut v0 = 1_i64;
let mut w0 = a * u0 + p * v0;
let mut u1 = 1_i64;
let mut v1 = 0_i64;
let mut w1 = a * u1 + p * v1;
while p <= w0 * w0 {
let q = w0 / w1;
u0 -= q * u1;
v0 -= q * v1;
w0 -= q * w1;
swap(&mut u0, &mut u1);
swap(&mut v0, &mut v1);
swap(&mut w0, &mut w1);
}
[w0, u0]
}
if self.value == 0 {
return write!(f, "0");
}
let [mut num, mut den] = berlekamp_massey_fp(self.value as i64, P as i64);
if den < 0 {
num = -num;
den = -den;
}
if den == 1 {
write!(f, "{}", num)
} else {
write!(f, "{}/{}", num, den)
}
}
}
impl<const P: u64> std::fmt::Display for Fp<P> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.value())
}
}
macro_rules! impl_from_signed {
($($t:ty),*) => {
$(
impl<const P: u64> From<$t> for Fp<P> {
fn from(x: $t) -> Self {
if x < 0 {
-Self::new((P as i64 - x as i64) as u64)
} else {
Self::new(x as u64)
}
}
}
)*
};
}
impl_from_signed!(i8, i16, i32, i64, i128, isize);
macro_rules! impl_from_unsigned {
($($t:ty),*) => {
$(
impl<const P: u64> From<$t> for Fp<P> {
fn from(x: $t) -> Self { Self::new(x as u64) }
}
)*
};
}
impl_from_unsigned!(u8, u16, u32, u64, u128, usize);
impl<const P: u64> AddAssign<Fp<P>> for Fp<P> {
fn add_assign(&mut self, rhs: Fp<P>) {
self.value += rhs.value;
if self.value >= P {
self.value -= P;
}
}
}
impl<const P: u64> SubAssign<Fp<P>> for Fp<P> {
fn sub_assign(&mut self, rhs: Fp<P>) {
if self.value < rhs.value {
self.value += P;
}
self.value -= rhs.value;
}
}
impl<const P: u64> MulAssign<Fp<P>> for Fp<P> {
fn mul_assign(&mut self, rhs: Fp<P>) {
self.value = self.value * rhs.value % P;
}
}
#[allow(clippy::suspicious_op_assign_impl)]
impl<const P: u64> DivAssign<Fp<P>> for Fp<P> {
fn div_assign(&mut self, rhs: Fp<P>) {
*self *= rhs.inv()
}
}
macro_rules! fp_forward_ops {
($(
$trait:ident,
$trait_assign:ident,
$fn:ident,
$fn_assign:ident,
)*) => {$(
impl<const P: u64> $trait_assign<&Fp<P>> for Fp<P> {
fn $fn_assign(&mut self, rhs: &Fp<P>) {
self.$fn_assign(*rhs);
}
}
impl<const P: u64, T: Into<Fp<P>>> $trait<T> for Fp<P> {
type Output = Fp<P>;
fn $fn(mut self, rhs: T) -> Self::Output {
self.$fn_assign(rhs.into());
self
}
}
impl<const P: u64> $trait<&Fp<P>> for Fp<P> {
type Output = Fp<P>;
fn $fn(self, rhs: &Fp<P>) -> Self::Output {
self.$fn(*rhs)
}
}
impl<const P: u64, T: Into<Fp<P>>> $trait<T> for &Fp<P> {
type Output = Fp<P>;
fn $fn(self, rhs: T) -> Self::Output {
(*self).$fn(rhs.into())
}
}
impl<const P: u64> $trait<&Fp<P>> for &Fp<P> {
type Output = Fp<P>;
fn $fn(self, rhs: &Fp<P>) -> Self::Output {
(*self).$fn(*rhs)
}
}
)*};
}
fp_forward_ops! {
Add, AddAssign, add, add_assign,
Sub, SubAssign, sub, sub_assign,
Mul, MulAssign, mul, mul_assign,
Div, DivAssign, div, div_assign,
}
impl<const P: u64> Neg for Fp<P> {
type Output = Fp<P>;
fn neg(mut self) -> Self::Output {
if self.value > 0 {
self.value = P - self.value;
}
self
}
}
impl<const P: u64> Sum for Fp<P> {
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::new(0), |acc, x| acc + x)
}
}
impl<'a, const P: u64> Sum<&'a Self> for Fp<P> {
fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self {
iter.copied().sum()
}
}
impl<const P: u64> Product for Fp<P> {
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::new(1), |acc, x| acc * x)
}
}
impl<'a, const P: u64> Product<&'a Self> for Fp<P> {
fn product<I: Iterator<Item = &'a Self>>(iter: I) -> Self {
iter.copied().product()
}
}
}
// }}}
ngtkana