結果

問題 No.1054 Union add query
ユーザー ecotteaecottea
提出日時 2024-05-06 00:09:26
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 185 ms / 2,000 ms
コード長 10,429 bytes
コンパイル時間 3,739 ms
コンパイル使用メモリ 262,768 KB
実行使用メモリ 18,816 KB
最終ジャッジ日時 2024-11-28 01:25:08
合計ジャッジ時間 6,426 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 135 ms
6,272 KB
testcase_04 AC 185 ms
18,816 KB
testcase_05 AC 129 ms
5,248 KB
testcase_06 AC 122 ms
9,472 KB
testcase_07 AC 110 ms
9,472 KB
testcase_08 AC 122 ms
9,472 KB
testcase_09 AC 173 ms
18,688 KB
testcase_10 AC 95 ms
18,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
int DX[4] = {1, 0, -1, 0}; // 4 近傍(下,右,上,左)
int DY[4] = {0, 1, 0, -1};
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
template <size_t N> inline int lsb(const bitset<N>& b) { return b._Find_first(); }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す
#endif


//【[1点,連結成分]加算/[1点,連結成分]総和 Union-Find】
/*
* Add_Sum_union_find<T>(int n) : O(n)
*	非連結で頂点数 n の Union-Find を値 0 で初期化する.
*
* Add_Sum_union_find<T>(vT a) : O(n)
*	非連結で頂点数 n の Union-Find を値 a[0..n) で初期化する.
*
* bool merge(int s, int t) : O(log n)
*	頂点 s と頂点 t を統合し,実際に統合されたかを返す.
*
* bool same(int s, int t) : O(log n)
*	頂点 s と頂点 t が同じ連結成分に属するかを返す.
*
* int leader(int s) : O(log n)
*	頂点 s の属する連結成分の根を返す.
*
* int size(int s) : O(log n)
*	頂点 s の属する連結成分の頂点数を返す.
*
* int size() : O(1)
*	連結成分の個数を返す.
*
* T get(int s) : O(log n)
*	頂点 s の値を返す.
*
* T sum_component(int s) : O(1)
*	頂点 s の属する連結成分の総和を返す.
*
* void set(int s, T x) : O(log n)
*	頂点 s の値を x にする.
*
* void add(int s, T x) : O(1)
*	頂点 s に x を加算する.
*
* void add_component(int s, T x) : O(log n)
*	頂点 s を含む連結成分全体に x を加算する.
*
* vvi groups() : O(n log n)
*	連結成分のリストを返す.
*/
template <class T>
struct Add_Sum_union_find {
	int n; // 頂点の個数
	int m; // 連結成分数

	// par[s] : 頂点 s の親(s が根なら -1)
	vi par;

	// cnt[s] : 頂点 s を根とする連結成分の頂点数(根以外は未定義)
	vi cnt;

	// v[s] : 頂点 s の値(ただし加算は反映されていない)
	vector<T> v;

	// vsum[s] : 頂点 s を根とする連結成分の総和(根以外は未定義)
	vector<T> vsum;

	// vadd[s] : 部分木 s への加算値
	vector<T> vadd;

	// 非連結で大きさ n の Union-Find を値 0 で初期化する.
	Add_Sum_union_find(int n) : n(n), m(n), par(n, -1), cnt(n, 1), v(n), vsum(n), vadd(n) {
	}

	// 非連結で頂点数 n の Union-Find を値 a[0..n) で初期化する.
	Add_Sum_union_find(const vector<T>& a) : n(sz(a)), m(n), par(n, -1), cnt(n, 1), v(a), vsum(a), vadd(n) {
	}
	Add_Sum_union_find() : n(0), m(0) {}

	// 頂点 s の属する連結成分の根を返す.
	int leader(int s) {
		// s が根でない限り親への移動を繰り返す.
		while (par[s] != -1) s = par[s];

		return s;
	}

	// 頂点 s, t を結合し,実際に統合されたかを返す.
	bool merge(int s, int t) {
		// 頂点 s, t の属する連結成分の根 rs, rt を得る.
		int rs = leader(s);
		int rt = leader(t);

		// 根が同じであれば既に連結であるから何もしない.
		if (rs == rt) return false;

		// rs を根とする大きい連結成分に,rt を根とする小さい連結成分を統合する(マージテク)
		if (cnt[rs] < cnt[rt]) swap(rs, rt);
		par[rt] = rs;
		cnt[rs] += cnt[rt];
		vsum[rs] += vsum[rt];
		vadd[rt] -= vadd[rs];

		// 連結成分の数を 1 つ減らす.
		m--;

		return true;
	}

	// 頂点 s, t が同じ連結成分に属するかを返す.
	bool same(int s, int t) {
		// 根が同じなら連結である.
		return leader(s) == leader(t);
	}

	// 頂点 s の属する連結成分の頂点数を返す.
	int size(int s) {
		// s の根を調べ,そこに記録されている頂点数の情報を返す.
		return cnt[leader(s)];
	}

	// 連結成分の個数を返す.
	int size() {
		return m;
	}

	// 連結成分のリストを返す.
	vvi groups() {
		vvi res(m);

		// r_to_id[r] : 根を r とする連結成分が何番目か
		vi r_to_id(n, -1); int id = 0;

		rep(s, n) {
			int r = leader(s);
			if (r_to_id[r] == -1) r_to_id[r] = id++;
			res[r_to_id[r]].push_back(s);
		}

		return res;
	}

	// 頂点 s の値を返す.
	T get(int s) {
		T res = v[s];

		// s から根までの加算値を集める.
		while (s != -1) {
			res += vadd[s];
			s = par[s];
		}

		return res;
	}

	// 頂点 s の属する連結成分の総和を返す.
	T sum_component(int s) {
		// s の根を調べ,そこに記録されている総和の情報を返す.
		return vsum[leader(s)];
	}

	// 頂点 s に x を加算する.
	void add(int s, T x) {
		v[s] += x;
		vsum[leader(s)] += x;
	}

	// 頂点 s の値を x にする.
	void set(int s, T x) {
		// 現在の値との差分を加算する.
		add(s, x - get(s));
	}

	// 頂点 s を含む連結成分全体に x を加算する.
	void add_component(int s, T x) {
		// r : s の属する連結成分の根
		int r = leader(s);

		vadd[r] += x;
		vsum[r] += x * (T)cnt[r];
	}

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, Add_Sum_union_find d) {
		repe(g, d.groups()) {
			repe(v, g) os << v << ":" << d.get(v) << " ";
			os << endl;
		}
		return os;
	}
#endif
};


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

	int n, q;
	cin >> n >> q;

	// 経路圧縮なし
	Add_Sum_union_find<ll> d(n);

	rep(hoge, q) {
		int t, a, b;
		cin >> t >> a >> b;

		if (t == 1) {
			d.merge(a - 1, b - 1);
		}
		else if (t == 2) {
			d.add_component(a - 1, b);
		}
		else {
			cout << d.get(a - 1) << "\n";
		}
	}
}
0