結果
問題 | No.754 畳み込みの和 |
ユーザー | ngtkana |
提出日時 | 2024-05-06 03:06:27 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 3,018 ms / 5,000 ms |
コード長 | 28,738 bytes |
コンパイル時間 | 12,932 ms |
コンパイル使用メモリ | 383,856 KB |
実行使用メモリ | 11,628 KB |
最終ジャッジ日時 | 2024-05-06 03:06:54 |
合計ジャッジ時間 | 26,347 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3,004 ms
11,504 KB |
testcase_01 | AC | 3,018 ms
11,520 KB |
testcase_02 | AC | 2,949 ms
11,628 KB |
コンパイルメッセージ
warning: unused import: `factorial::Factorial` --> src/main.rs:330:13 | 330 | pub use factorial::Factorial; | ^^^^^^^^^^^^^^^^^^^^ | = note: `#[warn(unused_imports)]` on by default warning: unused import: `fourier::any_mod_fps_mul` --> src/main.rs:331:13 | 331 | pub use fourier::any_mod_fps_mul; | ^^^^^^^^^^^^^^^^^^^^^^^^ warning: unused import: `fourier::fft` --> src/main.rs:332:13 | 332 | pub use fourier::fft; | ^^^^^^^^^^^^ warning: unused import: `fourier::fps_mul` --> src/main.rs:333:13 | 333 | pub use fourier::fps_mul; | ^^^^^^^^^^^^^^^^ warning: unused import: `fourier::ifft` --> src/main.rs:334:13 | 334 | pub use fourier::ifft; | ^^^^^^^^^^^^^
ソースコード
use proconio::input; use std::ops::Add; use std::ops::Mul; use std::ops::Sub; type Fp = fp::Fp<1000000007>; fn main() { input! { n: usize, a: [u64; n + 1], b: [u64; n + 1], } let mut slice = vec![Fp::new(0); 6 * (n + 1).next_power_of_two() - 2]; for (i, &x) in a.iter().enumerate() { slice[2 * i] = Fp::new(x); } for (i, &x) in b.iter().enumerate() { slice[2 * i + 1] = Fp::new(x); } karatsuba(&mut slice); let ans = slice[slice.len() - n - 1..].iter().sum::<Fp>(); println!("{}", ans); } trait Zero { fn zero() -> Self; } impl Zero for Fp { fn zero() -> Self { Fp::new(0) } } fn karatsuba<T>(slice: &mut Vec<T>) where T: Clone + Copy + Mul<Output = T> + Add<Output = T> + Sub<Output = T> + Zero + std::fmt::Debug, { assert_eq!(slice.len() % 6, 4); let n = slice.len() / 6 + 1; let mut tertiary = n * n; let mut left = 2 * n; let mut right = slice.len(); while tertiary != 0 { for size in (0..(tertiary.trailing_zeros() as usize) / 2) .rev() .map(|i| 1 << i) { for (i, j) in (left - 4 * size..).zip(left - 2 * size..).take(2 * size) { slice[left] = slice[i] + slice[j]; left += 1; } } left -= 1; let x = slice[left]; slice[left] = T::zero(); left -= 1; let y = slice[left]; slice[left] = T::zero(); right -= 1; slice[right] = x * y; right -= 1; tertiary -= 1; for i in 0.. { if tertiary >> (2 * i) & 3 != 3 { break; } tertiary ^= 1 << (2 * i); } for size in (0..((tertiary.trailing_zeros() as usize) / 2).min(n.trailing_zeros() as usize)) .map(|i| 1 << i) { for ((i, j), k) in (right..) .zip(right + 2 * size..) .zip(right + 4 * size..) .take(2 * size) { let (x, y, z) = (slice[i], slice[j], slice[k]); (slice[i], slice[j], slice[k]) = (z - x - y, y, x); } for (i, j) in (right..).zip(right + 3 * size..).take(2 * size) { slice[j] = slice[i] + slice[j]; slice[i] = T::zero(); } right += 2 * size; } } } // fp {{{ // https://ngtkana.github.io/ac-adapter-rs/fp/index.html #[allow(dead_code)] mod fp { mod ext_gcd { pub(crate) fn mod_inv<const P: u64>(x: u64) -> u64 { debug_assert!(P % 2 == 1); debug_assert!(P < 1 << 31); debug_assert!(x < P); mod_inv_signed(x as i64, P as i64) as u64 } fn mod_inv_signed(a: i64, m: i64) -> i64 { debug_assert!(a > 0); debug_assert!(m > 0); if a == 1 { return 1; } m + (1 - m * mod_inv_signed(m % a, a)) / a } } mod factorial { use super::Fp; use std::ops::Index; pub struct Factorial<const P: u64> { fact: Vec<Fp<P>>, inv_fact: Vec<Fp<P>>, } impl<const P: u64> Factorial<P> { pub fn new(length: usize) -> Self { let mut fact = vec![Fp::<P>::new(1); length + 1]; let mut inv_fact = vec![Fp::<P>::new(1); length + 1]; for i in 1..=length { fact[i] = fact[i - 1] * Fp::<P>::new(i as u64); } inv_fact[length] = fact[length].inv(); for i in (1..=length).rev() { inv_fact[i - 1] = inv_fact[i] * Fp::<P>::new(i as u64); } Self { fact, inv_fact } } pub fn fact(&self, n: usize) -> Fp<P> { self.fact[n] } pub fn inv_fact(&self, n: usize) -> Fp<P> { self.inv_fact[n] } pub fn perm(&self, n: usize, k: usize) -> Fp<P> { self.fact[n] * self.inv_fact[n - k] } pub fn comb(&self, n: usize, k: usize) -> Fp<P> { self.fact[n] * self.inv_fact[n - k] * self.inv_fact[k] } pub fn binom(&self, n: usize, k: usize) -> Fp<P> { self.comb(n, k) } pub fn comb_or_zero(&self, n: usize, k: isize) -> Fp<P> { if k < 0 || k as usize > n { Fp::<P>::new(0) } else { self.comb(n, k as usize) } } pub fn comb_with_reputation(&self, n: usize, k: usize) -> Fp<P> { assert!(n > 0 || k > 0); self.comb(n + k - 1, k) } } impl<const P: u64> Index<usize> for Factorial<P> { type Output = Fp<P>; fn index(&self, index: usize) -> &Self::Output { &self.fact[index] } } } mod fourier { use super::mod_inv; use super::Fp; use super::PrimitiveRoot; const P1: u64 = 924844033; const P2: u64 = 998244353; const P3: u64 = 1012924417; type F1 = Fp<P1>; type F2 = Fp<P2>; type F3 = Fp<P3>; pub fn fps_mul<const P: u64>(a: impl AsRef<[Fp<P>]>, b: impl AsRef<[Fp<P>]>) -> Vec<Fp<P>> where (): PrimitiveRoot<P>, { let a = a.as_ref(); let b = b.as_ref(); if a.is_empty() || b.is_empty() { return vec![]; } let mut a = a.to_vec(); let mut b = b.to_vec(); let n = a.len() + b.len() - 1; let len = n.next_power_of_two(); a.resize(len, Fp::new(0)); b.resize(len, Fp::new(0)); fft(&mut a); fft(&mut b); for (a, b) in a.iter_mut().zip(b.iter()) { *a *= *b; } ifft(&mut a); a.truncate(n); a } pub fn any_mod_fps_mul<const P: u64>(a: &[Fp<P>], b: &[Fp<P>]) -> Vec<Fp<P>> { let v1 = fps_mul( a.iter().map(|&x| F1::new(x.value())).collect::<Vec<_>>(), b.iter().map(|&x| F1::new(x.value())).collect::<Vec<_>>(), ); let v2 = fps_mul( a.iter().map(|&x| F2::new(x.value())).collect::<Vec<_>>(), b.iter().map(|&x| F2::new(x.value())).collect::<Vec<_>>(), ); let v3 = fps_mul( a.iter().map(|&x| F3::new(x.value())).collect::<Vec<_>>(), b.iter().map(|&x| F3::new(x.value())).collect::<Vec<_>>(), ); v1.into_iter() .zip(v2) .zip(v3) .map(|((e1, e2), e3)| garner(e1, e2, e3)) .collect::<Vec<_>>() } pub fn fft<const P: u64>(f: &mut [Fp<P>]) where (): PrimitiveRoot<P>, { let n = f.len(); assert!(n.is_power_of_two()); assert!((P - 1) % n as u64 == 0); let mut root = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / f.len() as u64); let fourth = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / 4); let mut fft_len = n; while 4 <= fft_len { let quarter = fft_len / 4; for f in f.chunks_mut(fft_len) { let mut c = Fp::new(1); for (((i, j), k), l) in (0..) .zip(quarter..) .zip(quarter * 2..) .zip(quarter * 3..) .take(quarter) { let c2 = c * c; let x = f[i] + f[k]; let y = f[j] + f[l]; let z = f[i] - f[k]; let w = fourth * (f[j] - f[l]); f[i] = x + y; f[j] = c2 * (x - y); f[k] = c * (z + w); f[l] = c2 * c * (z - w); c *= root; } } root *= root; root *= root; fft_len = quarter; } if fft_len == 2 { for f in f.chunks_mut(2) { let x = f[0]; let y = f[1]; f[0] = x + y; f[1] = x - y; } } } pub fn ifft<const P: u64>(f: &mut [Fp<P>]) where (): PrimitiveRoot<P>, { let n = f.len(); assert!(n.is_power_of_two()); let root = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / f.len() as u64); let mut roots = std::iter::successors(Some(root.inv()), |x| Some(x * x)) .take(n.trailing_zeros() as usize + 1) .collect::<Vec<_>>(); roots.reverse(); let fourth = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / 4).inv(); let mut quarter = 1_usize; if n.trailing_zeros() % 2 == 1 { for f in f.chunks_mut(2) { let x = f[0]; let y = f[1]; f[0] = x + y; f[1] = x - y; } quarter = 2; } while quarter != n { let fft_len = quarter * 4; let root = roots[fft_len.trailing_zeros() as usize]; for f in f.chunks_mut(fft_len) { let mut c = Fp::new(1); for (((i, j), k), l) in (0..) .zip(quarter..) .zip(quarter * 2..) .zip(quarter * 3..) .take(quarter) { let c2 = c * c; let x = f[i] + c2 * f[j]; let y = f[i] - c2 * f[j]; let z = c * (f[k] + c2 * f[l]); let w = fourth * c * (f[k] - c2 * f[l]); f[i] = x + z; f[j] = y + w; f[k] = x - z; f[l] = y - w; c *= root; } } quarter = fft_len; } let d = Fp::from(f.len()).inv(); f.iter_mut().for_each(|x| *x *= d); } fn garner<const P: u64>(x1: Fp<P1>, x2: Fp<P2>, x3: Fp<P3>) -> Fp<P> { let (x1, x2, x3) = (x1.value(), x2.value(), x3.value()); let x2 = ((x2 + (P2 - x1)) * mod_inv::<P2>(P1)) % P2; let x3 = (((x3 + (P3 - x1)) * mod_inv::<P3>(P1) % P3 + (P3 - x2)) * mod_inv::<P3>(P2)) % P3; Fp::new(x1 + P1 * (x2 + P2 * x3 % P)) } } use ext_gcd::mod_inv; pub use factorial::Factorial; pub use fourier::any_mod_fps_mul; pub use fourier::fft; pub use fourier::fps_mul; pub use fourier::ifft; use std::iter::Product; use std::iter::Sum; use std::mem::swap; use std::ops::Add; use std::ops::AddAssign; use std::ops::Div; use std::ops::DivAssign; use std::ops::Mul; use std::ops::MulAssign; use std::ops::Neg; use std::ops::Sub; use std::ops::SubAssign; #[macro_export] macro_rules! fp { ($value:expr) => { $crate::fp::Fp::from($value) }; ($value:expr; mod $p:expr) => { $crate::fp::Fp::<$p>::from($value) }; } pub trait PrimitiveRoot<const P: u64> { const VALUE: Fp<P>; } impl PrimitiveRoot<998244353> for () { const VALUE: Fp<998244353> = Fp::new(3); } impl PrimitiveRoot<1012924417> for () { const VALUE: Fp<1012924417> = Fp::new(5); } impl PrimitiveRoot<924844033> for () { const VALUE: Fp<924844033> = Fp::new(5); } #[derive(Clone, Copy, PartialEq, Eq, Hash)] pub struct Fp<const P: u64> { value: u64, } impl<const P: u64> Fp<P> { pub const fn new(value: u64) -> Self { Self { value: value % P } } pub const fn value(self) -> u64 { self.value } pub fn inv(self) -> Self { Self { value: mod_inv::<P>(self.value), } } pub fn pow(self, mut exp: u64) -> Self { let mut result = Self::new(1); let mut base = self; while exp > 0 { if exp & 1 == 1 { result *= base; } base *= base; exp >>= 1; } result } pub fn sign(pow: usize) -> Self { Self::new(if pow % 2 == 0 { 1 } else { P - 1 }) } } impl<const P: u64> std::fmt::Debug for Fp<P> { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { pub fn berlekamp_massey_fp(a: i64, p: i64) -> [i64; 2] { let mut u0 = 0_i64; let mut v0 = 1_i64; let mut w0 = a * u0 + p * v0; let mut u1 = 1_i64; let mut v1 = 0_i64; let mut w1 = a * u1 + p * v1; while p <= w0 * w0 { let q = w0 / w1; u0 -= q * u1; v0 -= q * v1; w0 -= q * w1; swap(&mut u0, &mut u1); swap(&mut v0, &mut v1); swap(&mut w0, &mut w1); } [w0, u0] } if self.value == 0 { return write!(f, "0"); } let [mut num, mut den] = berlekamp_massey_fp(self.value as i64, P as i64); if den < 0 { num = -num; den = -den; } if den == 1 { write!(f, "{}", num) } else { write!(f, "{}/{}", num, den) } } } impl<const P: u64> std::fmt::Display for Fp<P> { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { write!(f, "{}", self.value()) } } macro_rules! impl_from_signed { ($($t:ty),*) => { $( impl<const P: u64> From<$t> for Fp<P> { fn from(x: $t) -> Self { if x < 0 { -Self::new((P as i64 - x as i64) as u64) } else { Self::new(x as u64) } } } )* }; } impl_from_signed!(i8, i16, i32, i64, i128, isize); macro_rules! impl_from_unsigned { ($($t:ty),*) => { $( impl<const P: u64> From<$t> for Fp<P> { fn from(x: $t) -> Self { Self::new(x as u64) } } )* }; } impl_from_unsigned!(u8, u16, u32, u64, u128, usize); impl<const P: u64> AddAssign<Fp<P>> for Fp<P> { fn add_assign(&mut self, rhs: Fp<P>) { self.value += rhs.value; if self.value >= P { self.value -= P; } } } impl<const P: u64> SubAssign<Fp<P>> for Fp<P> { fn sub_assign(&mut self, rhs: Fp<P>) { if self.value < rhs.value { self.value += P; } self.value -= rhs.value; } } impl<const P: u64> MulAssign<Fp<P>> for Fp<P> { fn mul_assign(&mut self, rhs: Fp<P>) { self.value = self.value * rhs.value % P; } } #[allow(clippy::suspicious_op_assign_impl)] impl<const P: u64> DivAssign<Fp<P>> for Fp<P> { fn div_assign(&mut self, rhs: Fp<P>) { *self *= rhs.inv() } } macro_rules! fp_forward_ops { ($( $trait:ident, $trait_assign:ident, $fn:ident, $fn_assign:ident, )*) => {$( impl<const P: u64> $trait_assign<&Fp<P>> for Fp<P> { fn $fn_assign(&mut self, rhs: &Fp<P>) { self.$fn_assign(*rhs); } } impl<const P: u64, T: Into<Fp<P>>> $trait<T> for Fp<P> { type Output = Fp<P>; fn $fn(mut self, rhs: T) -> Self::Output { self.$fn_assign(rhs.into()); self } } impl<const P: u64> $trait<&Fp<P>> for Fp<P> { type Output = Fp<P>; fn $fn(self, rhs: &Fp<P>) -> Self::Output { self.$fn(*rhs) } } impl<const P: u64, T: Into<Fp<P>>> $trait<T> for &Fp<P> { type Output = Fp<P>; fn $fn(self, rhs: T) -> Self::Output { (*self).$fn(rhs.into()) } } impl<const P: u64> $trait<&Fp<P>> for &Fp<P> { type Output = Fp<P>; fn $fn(self, rhs: &Fp<P>) -> Self::Output { (*self).$fn(*rhs) } } )*}; } fp_forward_ops! { Add, AddAssign, add, add_assign, Sub, SubAssign, sub, sub_assign, Mul, MulAssign, mul, mul_assign, Div, DivAssign, div, div_assign, } impl<const P: u64> Neg for Fp<P> { type Output = Fp<P>; fn neg(mut self) -> Self::Output { if self.value > 0 { self.value = P - self.value; } self } } impl<const P: u64> Sum for Fp<P> { fn sum<I: Iterator<Item = Self>>(iter: I) -> Self { iter.fold(Self::new(0), |acc, x| acc + x) } } impl<'a, const P: u64> Sum<&'a Self> for Fp<P> { fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self { iter.copied().sum() } } impl<const P: u64> Product for Fp<P> { fn product<I: Iterator<Item = Self>>(iter: I) -> Self { iter.fold(Self::new(1), |acc, x| acc * x) } } impl<'a, const P: u64> Product<&'a Self> for Fp<P> { fn product<I: Iterator<Item = &'a Self>>(iter: I) -> Self { iter.copied().product() } } } // }}} // lg {{{ // https://ngtkana.github.io/ac-adapter-rs/lg/index.html #[allow(dead_code)] mod lg { use std::borrow::Borrow; use std::fmt; use std::iter::once; #[macro_export] macro_rules! lg { (@contents $head:expr $(, $tail:expr)*) => {{ $crate::__lg_internal!($head); $( eprint!(","); $crate::__lg_internal!($tail); )* eprintln!(); }}; ($($expr:expr),* $(,)?) => {{ eprint!("{}\u{276f}", line!()); $crate::lg!(@contents $($expr),*) }}; } #[doc(hidden)] #[macro_export] macro_rules! __lg_internal { ($value:expr) => {{ match $value { head => { eprint!( " {} = {}", stringify!($value), $crate::lg::__quiet(format!("{:?}", &head)) ); } } }}; } #[macro_export] macro_rules! rows { { $index_label:literal, $(@offset $offset:expr,)? $(@verticalbar $verticalbar:expr,)* $($(@$label:literal =>)? $values:expr),* $(,)? } => {{ #![allow(unused_assignments)] let mut rows = $crate::lg::Rows::default(); rows.line_number(line!()); $(rows.offset($offset);)? $(rows.verticalbar($verticalbar);)* rows.index_label($index_label); $({ let mut label = stringify!($values).to_string(); if label.starts_with("&") { label = label[1..].to_string(); } $({ let label_: &'static str = $label; label = label_.to_string(); })? rows.row(label, $values); })* eprintln!("{}", rows.to_string_table()); }}; } #[macro_export] macro_rules! table { { $(@$name:literal => )? $values:expr $(,)? } => {{ #![allow(unused_assignments)] let mut name = stringify!($values).to_string(); if name.starts_with("&") { name = name[1..].to_string(); } $({ let name_: &'static str = $name; name = name_.to_string(); })? let mut rows = $crate::lg::Rows::default(); rows.line_number(line!()); rows.table_name(name); #[allow(array_into_iter)] for (i, row) in $values.into_iter().enumerate() { rows.row(i.to_string(), row); } eprintln!("{}", rows.to_string_table()); }}; } #[doc(hidden)] pub fn __quiet(s: impl AsRef<str>) -> String { s.as_ref() .replace("340282366920938463463374607431768211455", "*") // u128 .replace("170141183460469231731687303715884105727", "*") // i128 .replace("18446744073709551615", "*") // u64 .replace("9223372036854775807", "*") // i64 .replace("-9223372036854775808", "*") // i64 .replace("4294967295", "*") // u32 .replace("2147483647", "*") // i32 .replace("-2147483648", "*") // i32 .replace("None", "*") .replace("Some", "") .replace("true", "#") .replace("false", ".") .replace(['"', '\''], "") } #[doc(hidden)] #[derive(Default)] pub struct Rows { line_number: String, index_label: String, offset: usize, verticalbars: Vec<usize>, table_name: String, rows: Vec<Row>, } impl Rows { pub fn line_number(&mut self, line_number: u32) -> &mut Self { self.line_number = format!("{}", line_number); self } pub fn index_label(&mut self, index_label: impl Into<String>) -> &mut Self { self.index_label = index_label.into(); self } pub fn offset(&mut self, offset: usize) -> &mut Self { self.offset = offset; self } pub fn verticalbar(&mut self, verticalbar: impl IntoIterator<Item = usize>) -> &mut Self { self.verticalbars.extend(verticalbar); self } pub fn table_name(&mut self, table_name: impl Into<String>) -> &mut Self { self.table_name = table_name.into(); self } pub fn row( &mut self, label: impl Into<String>, values: impl IntoIterator<Item = impl fmt::Debug>, ) -> &mut Self { self.rows.push(Row { label: label.into(), values: values .into_iter() .map(|value| __quiet(format!("{:?}", value))) .collect(), }); self } pub fn to_string_table(self) -> StringTable { let Self { line_number, index_label, offset, verticalbars, table_name, rows, } = self; let w = rows .iter() .map(|row| row.values.len()) .max() .unwrap_or_default(); let mut verticalbar_count = vec![0; w + 1]; for &v in &verticalbars { if (offset..=offset + w).contains(&v) { verticalbar_count[v - offset] += 1; } } StringTable { head: StringRow { label: format!( "{line_number}❯ {table_name}{index_label}", index_label = if index_label.is_empty() { String::new() } else { format!("[{}]", index_label) } ), values: (offset..offset + w) .map(|index| index.to_string()) .collect(), }, body: rows .iter() .map(|row| StringRow { label: row.label.clone(), values: row.values.clone(), }) .collect(), verticalbar_count, } } } struct Row { label: String, values: Vec<String>, } #[doc(hidden)] pub struct StringTable { head: StringRow, body: Vec<StringRow>, verticalbar_count: Vec<usize>, } impl fmt::Display for StringTable { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { let Self { head, body, verticalbar_count, } = self; let w = body .iter() .map(|row| row.values.len()) .max() .unwrap_or_default(); let label_width = once(head.label.chars().count()) .chain(body.iter().map(|row| row.label.chars().count())) .max() .unwrap(); let value_width = (0..w) .map(|j| { once(j.to_string().len()) .chain( body.iter() .map(|row| row.values.get(j).map_or(0, |s| s.chars().count())), ) .max() .unwrap() }) .collect::<Vec<_>>(); // Heading gray(f)?; write!( f, "{}", head.to_string(label_width, &value_width, verticalbar_count, true) )?; resetln(f)?; // Body for row in body { write!( f, "{}", row.to_string(label_width, &value_width, verticalbar_count, false) )?; writeln!(f)?; } Ok(()) } } struct StringRow { label: String, values: Vec<String>, } impl StringRow { fn to_string( &self, label_width: usize, value_width: &[usize], varticalbars_count: &[usize], label_align_left: bool, ) -> String { let Self { label, values } = self; let w = value_width.len(); let mut s = String::new(); s.push_str(&if label_align_left { format!("{label:<label_width$} |") } else { format!("{label:^label_width$} |") }); for j in 0..w { let value_width = value_width[j]; s.push_str("|".repeat(varticalbars_count[j]).as_str()); if varticalbars_count[j] == 0 && j != 0 && value_width <= 1 { s.push(' '); } match values.get(j) { Some(value) => { s.push_str(&format!(" {value:>value_width$}",)); } None => { s.push_str(" ".repeat(value_width + 1).as_str()); } } } s } } const GRAY: &str = "\x1b[48;2;127;127;127;37m"; const RESET: &str = "\x1b[0m"; fn gray(f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{GRAY}") } fn resetln(f: &mut fmt::Formatter<'_>) -> fmt::Result { writeln!(f, "{RESET}") } pub fn bools<B, I>(iter: I) -> String where B: Borrow<bool>, I: IntoIterator<Item = B>, { format!( "[{}]", iter.into_iter() .map(|b| ['.', '#'][usize::from(*(b.borrow()))]) .collect::<String>(), ) } } // }}}