結果

問題 No.754 畳み込みの和
ユーザー ngtkanangtkana
提出日時 2024-05-06 03:06:27
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 3,018 ms / 5,000 ms
コード長 28,738 bytes
コンパイル時間 12,932 ms
コンパイル使用メモリ 383,856 KB
実行使用メモリ 11,628 KB
最終ジャッジ日時 2024-05-06 03:06:54
合計ジャッジ時間 26,347 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 3,004 ms
11,504 KB
testcase_01 AC 3,018 ms
11,520 KB
testcase_02 AC 2,949 ms
11,628 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: unused import: `factorial::Factorial`
   --> src/main.rs:330:13
    |
330 |     pub use factorial::Factorial;
    |             ^^^^^^^^^^^^^^^^^^^^
    |
    = note: `#[warn(unused_imports)]` on by default

warning: unused import: `fourier::any_mod_fps_mul`
   --> src/main.rs:331:13
    |
331 |     pub use fourier::any_mod_fps_mul;
    |             ^^^^^^^^^^^^^^^^^^^^^^^^

warning: unused import: `fourier::fft`
   --> src/main.rs:332:13
    |
332 |     pub use fourier::fft;
    |             ^^^^^^^^^^^^

warning: unused import: `fourier::fps_mul`
   --> src/main.rs:333:13
    |
333 |     pub use fourier::fps_mul;
    |             ^^^^^^^^^^^^^^^^

warning: unused import: `fourier::ifft`
   --> src/main.rs:334:13
    |
334 |     pub use fourier::ifft;
    |             ^^^^^^^^^^^^^

ソースコード

diff #

use proconio::input;
use std::ops::Add;
use std::ops::Mul;
use std::ops::Sub;

type Fp = fp::Fp<1000000007>;

fn main() {
    input! {
        n: usize,
        a: [u64; n + 1],
        b: [u64; n + 1],
    }
    let mut slice = vec![Fp::new(0); 6 * (n + 1).next_power_of_two() - 2];
    for (i, &x) in a.iter().enumerate() {
        slice[2 * i] = Fp::new(x);
    }
    for (i, &x) in b.iter().enumerate() {
        slice[2 * i + 1] = Fp::new(x);
    }
    karatsuba(&mut slice);
    let ans = slice[slice.len() - n - 1..].iter().sum::<Fp>();
    println!("{}", ans);
}

trait Zero {
    fn zero() -> Self;
}
impl Zero for Fp {
    fn zero() -> Self {
        Fp::new(0)
    }
}

fn karatsuba<T>(slice: &mut Vec<T>)
where
    T: Clone + Copy + Mul<Output = T> + Add<Output = T> + Sub<Output = T> + Zero + std::fmt::Debug,
{
    assert_eq!(slice.len() % 6, 4);
    let n = slice.len() / 6 + 1;
    let mut tertiary = n * n;
    let mut left = 2 * n;
    let mut right = slice.len();
    while tertiary != 0 {
        for size in (0..(tertiary.trailing_zeros() as usize) / 2)
            .rev()
            .map(|i| 1 << i)
        {
            for (i, j) in (left - 4 * size..).zip(left - 2 * size..).take(2 * size) {
                slice[left] = slice[i] + slice[j];
                left += 1;
            }
        }
        left -= 1;
        let x = slice[left];
        slice[left] = T::zero();
        left -= 1;
        let y = slice[left];
        slice[left] = T::zero();
        right -= 1;
        slice[right] = x * y;
        right -= 1;
        tertiary -= 1;
        for i in 0.. {
            if tertiary >> (2 * i) & 3 != 3 {
                break;
            }
            tertiary ^= 1 << (2 * i);
        }
        for size in (0..((tertiary.trailing_zeros() as usize) / 2).min(n.trailing_zeros() as usize))
            .map(|i| 1 << i)
        {
            for ((i, j), k) in (right..)
                .zip(right + 2 * size..)
                .zip(right + 4 * size..)
                .take(2 * size)
            {
                let (x, y, z) = (slice[i], slice[j], slice[k]);
                (slice[i], slice[j], slice[k]) = (z - x - y, y, x);
            }
            for (i, j) in (right..).zip(right + 3 * size..).take(2 * size) {
                slice[j] = slice[i] + slice[j];
                slice[i] = T::zero();
            }
            right += 2 * size;
        }
    }
}

// fp {{{
// https://ngtkana.github.io/ac-adapter-rs/fp/index.html

#[allow(dead_code)]
mod fp {
    mod ext_gcd {
        pub(crate) fn mod_inv<const P: u64>(x: u64) -> u64 {
            debug_assert!(P % 2 == 1);
            debug_assert!(P < 1 << 31);
            debug_assert!(x < P);
            mod_inv_signed(x as i64, P as i64) as u64
        }
        fn mod_inv_signed(a: i64, m: i64) -> i64 {
            debug_assert!(a > 0);
            debug_assert!(m > 0);
            if a == 1 {
                return 1;
            }
            m + (1 - m * mod_inv_signed(m % a, a)) / a
        }
    }
    mod factorial {
        use super::Fp;
        use std::ops::Index;
        pub struct Factorial<const P: u64> {
            fact: Vec<Fp<P>>,
            inv_fact: Vec<Fp<P>>,
        }
        impl<const P: u64> Factorial<P> {
            pub fn new(length: usize) -> Self {
                let mut fact = vec![Fp::<P>::new(1); length + 1];
                let mut inv_fact = vec![Fp::<P>::new(1); length + 1];
                for i in 1..=length {
                    fact[i] = fact[i - 1] * Fp::<P>::new(i as u64);
                }
                inv_fact[length] = fact[length].inv();
                for i in (1..=length).rev() {
                    inv_fact[i - 1] = inv_fact[i] * Fp::<P>::new(i as u64);
                }
                Self { fact, inv_fact }
            }

            pub fn fact(&self, n: usize) -> Fp<P> {
                self.fact[n]
            }

            pub fn inv_fact(&self, n: usize) -> Fp<P> {
                self.inv_fact[n]
            }

            pub fn perm(&self, n: usize, k: usize) -> Fp<P> {
                self.fact[n] * self.inv_fact[n - k]
            }

            pub fn comb(&self, n: usize, k: usize) -> Fp<P> {
                self.fact[n] * self.inv_fact[n - k] * self.inv_fact[k]
            }

            pub fn binom(&self, n: usize, k: usize) -> Fp<P> {
                self.comb(n, k)
            }

            pub fn comb_or_zero(&self, n: usize, k: isize) -> Fp<P> {
                if k < 0 || k as usize > n {
                    Fp::<P>::new(0)
                } else {
                    self.comb(n, k as usize)
                }
            }

            pub fn comb_with_reputation(&self, n: usize, k: usize) -> Fp<P> {
                assert!(n > 0 || k > 0);
                self.comb(n + k - 1, k)
            }
        }
        impl<const P: u64> Index<usize> for Factorial<P> {
            type Output = Fp<P>;

            fn index(&self, index: usize) -> &Self::Output {
                &self.fact[index]
            }
        }
    }
    mod fourier {
        use super::mod_inv;
        use super::Fp;
        use super::PrimitiveRoot;
        const P1: u64 = 924844033;
        const P2: u64 = 998244353;
        const P3: u64 = 1012924417;
        type F1 = Fp<P1>;
        type F2 = Fp<P2>;
        type F3 = Fp<P3>;
        pub fn fps_mul<const P: u64>(a: impl AsRef<[Fp<P>]>, b: impl AsRef<[Fp<P>]>) -> Vec<Fp<P>>
        where
            (): PrimitiveRoot<P>,
        {
            let a = a.as_ref();
            let b = b.as_ref();
            if a.is_empty() || b.is_empty() {
                return vec![];
            }
            let mut a = a.to_vec();
            let mut b = b.to_vec();
            let n = a.len() + b.len() - 1;
            let len = n.next_power_of_two();
            a.resize(len, Fp::new(0));
            b.resize(len, Fp::new(0));
            fft(&mut a);
            fft(&mut b);
            for (a, b) in a.iter_mut().zip(b.iter()) {
                *a *= *b;
            }
            ifft(&mut a);
            a.truncate(n);
            a
        }
        pub fn any_mod_fps_mul<const P: u64>(a: &[Fp<P>], b: &[Fp<P>]) -> Vec<Fp<P>> {
            let v1 = fps_mul(
                a.iter().map(|&x| F1::new(x.value())).collect::<Vec<_>>(),
                b.iter().map(|&x| F1::new(x.value())).collect::<Vec<_>>(),
            );
            let v2 = fps_mul(
                a.iter().map(|&x| F2::new(x.value())).collect::<Vec<_>>(),
                b.iter().map(|&x| F2::new(x.value())).collect::<Vec<_>>(),
            );
            let v3 = fps_mul(
                a.iter().map(|&x| F3::new(x.value())).collect::<Vec<_>>(),
                b.iter().map(|&x| F3::new(x.value())).collect::<Vec<_>>(),
            );
            v1.into_iter()
                .zip(v2)
                .zip(v3)
                .map(|((e1, e2), e3)| garner(e1, e2, e3))
                .collect::<Vec<_>>()
        }
        pub fn fft<const P: u64>(f: &mut [Fp<P>])
        where
            (): PrimitiveRoot<P>,
        {
            let n = f.len();
            assert!(n.is_power_of_two());
            assert!((P - 1) % n as u64 == 0);
            let mut root = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / f.len() as u64);
            let fourth = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / 4);
            let mut fft_len = n;
            while 4 <= fft_len {
                let quarter = fft_len / 4;
                for f in f.chunks_mut(fft_len) {
                    let mut c = Fp::new(1);
                    for (((i, j), k), l) in (0..)
                        .zip(quarter..)
                        .zip(quarter * 2..)
                        .zip(quarter * 3..)
                        .take(quarter)
                    {
                        let c2 = c * c;
                        let x = f[i] + f[k];
                        let y = f[j] + f[l];
                        let z = f[i] - f[k];
                        let w = fourth * (f[j] - f[l]);
                        f[i] = x + y;
                        f[j] = c2 * (x - y);
                        f[k] = c * (z + w);
                        f[l] = c2 * c * (z - w);
                        c *= root;
                    }
                }
                root *= root;
                root *= root;
                fft_len = quarter;
            }
            if fft_len == 2 {
                for f in f.chunks_mut(2) {
                    let x = f[0];
                    let y = f[1];
                    f[0] = x + y;
                    f[1] = x - y;
                }
            }
        }
        pub fn ifft<const P: u64>(f: &mut [Fp<P>])
        where
            (): PrimitiveRoot<P>,
        {
            let n = f.len();
            assert!(n.is_power_of_two());
            let root = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / f.len() as u64);
            let mut roots = std::iter::successors(Some(root.inv()), |x| Some(x * x))
                .take(n.trailing_zeros() as usize + 1)
                .collect::<Vec<_>>();
            roots.reverse();
            let fourth = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / 4).inv();
            let mut quarter = 1_usize;
            if n.trailing_zeros() % 2 == 1 {
                for f in f.chunks_mut(2) {
                    let x = f[0];
                    let y = f[1];
                    f[0] = x + y;
                    f[1] = x - y;
                }
                quarter = 2;
            }
            while quarter != n {
                let fft_len = quarter * 4;
                let root = roots[fft_len.trailing_zeros() as usize];
                for f in f.chunks_mut(fft_len) {
                    let mut c = Fp::new(1);
                    for (((i, j), k), l) in (0..)
                        .zip(quarter..)
                        .zip(quarter * 2..)
                        .zip(quarter * 3..)
                        .take(quarter)
                    {
                        let c2 = c * c;
                        let x = f[i] + c2 * f[j];
                        let y = f[i] - c2 * f[j];
                        let z = c * (f[k] + c2 * f[l]);
                        let w = fourth * c * (f[k] - c2 * f[l]);
                        f[i] = x + z;
                        f[j] = y + w;
                        f[k] = x - z;
                        f[l] = y - w;
                        c *= root;
                    }
                }
                quarter = fft_len;
            }
            let d = Fp::from(f.len()).inv();
            f.iter_mut().for_each(|x| *x *= d);
        }
        fn garner<const P: u64>(x1: Fp<P1>, x2: Fp<P2>, x3: Fp<P3>) -> Fp<P> {
            let (x1, x2, x3) = (x1.value(), x2.value(), x3.value());
            let x2 = ((x2 + (P2 - x1)) * mod_inv::<P2>(P1)) % P2;
            let x3 =
                (((x3 + (P3 - x1)) * mod_inv::<P3>(P1) % P3 + (P3 - x2)) * mod_inv::<P3>(P2)) % P3;
            Fp::new(x1 + P1 * (x2 + P2 * x3 % P))
        }
    }
    use ext_gcd::mod_inv;
    pub use factorial::Factorial;
    pub use fourier::any_mod_fps_mul;
    pub use fourier::fft;
    pub use fourier::fps_mul;
    pub use fourier::ifft;
    use std::iter::Product;
    use std::iter::Sum;
    use std::mem::swap;
    use std::ops::Add;
    use std::ops::AddAssign;
    use std::ops::Div;
    use std::ops::DivAssign;
    use std::ops::Mul;
    use std::ops::MulAssign;
    use std::ops::Neg;
    use std::ops::Sub;
    use std::ops::SubAssign;
    #[macro_export]
    macro_rules! fp {
        ($value:expr) => {
            $crate::fp::Fp::from($value)
        };
        ($value:expr; mod $p:expr) => {
            $crate::fp::Fp::<$p>::from($value)
        };
    }
    pub trait PrimitiveRoot<const P: u64> {
        const VALUE: Fp<P>;
    }
    impl PrimitiveRoot<998244353> for () {
        const VALUE: Fp<998244353> = Fp::new(3);
    }
    impl PrimitiveRoot<1012924417> for () {
        const VALUE: Fp<1012924417> = Fp::new(5);
    }
    impl PrimitiveRoot<924844033> for () {
        const VALUE: Fp<924844033> = Fp::new(5);
    }
    #[derive(Clone, Copy, PartialEq, Eq, Hash)]
    pub struct Fp<const P: u64> {
        value: u64,
    }
    impl<const P: u64> Fp<P> {
        pub const fn new(value: u64) -> Self {
            Self { value: value % P }
        }

        pub const fn value(self) -> u64 {
            self.value
        }

        pub fn inv(self) -> Self {
            Self {
                value: mod_inv::<P>(self.value),
            }
        }

        pub fn pow(self, mut exp: u64) -> Self {
            let mut result = Self::new(1);
            let mut base = self;
            while exp > 0 {
                if exp & 1 == 1 {
                    result *= base;
                }
                base *= base;
                exp >>= 1;
            }
            result
        }

        pub fn sign(pow: usize) -> Self {
            Self::new(if pow % 2 == 0 { 1 } else { P - 1 })
        }
    }
    impl<const P: u64> std::fmt::Debug for Fp<P> {
        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            pub fn berlekamp_massey_fp(a: i64, p: i64) -> [i64; 2] {
                let mut u0 = 0_i64;
                let mut v0 = 1_i64;
                let mut w0 = a * u0 + p * v0;
                let mut u1 = 1_i64;
                let mut v1 = 0_i64;
                let mut w1 = a * u1 + p * v1;
                while p <= w0 * w0 {
                    let q = w0 / w1;
                    u0 -= q * u1;
                    v0 -= q * v1;
                    w0 -= q * w1;
                    swap(&mut u0, &mut u1);
                    swap(&mut v0, &mut v1);
                    swap(&mut w0, &mut w1);
                }
                [w0, u0]
            }
            if self.value == 0 {
                return write!(f, "0");
            }
            let [mut num, mut den] = berlekamp_massey_fp(self.value as i64, P as i64);
            if den < 0 {
                num = -num;
                den = -den;
            }
            if den == 1 {
                write!(f, "{}", num)
            } else {
                write!(f, "{}/{}", num, den)
            }
        }
    }
    impl<const P: u64> std::fmt::Display for Fp<P> {
        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            write!(f, "{}", self.value())
        }
    }
    macro_rules! impl_from_signed {
        ($($t:ty),*) => {
            $(
                impl<const P: u64> From<$t> for Fp<P> {
                    fn from(x: $t) -> Self {
                        if x < 0 {
                            -Self::new((P as i64 - x as i64) as u64)
                        } else {
                            Self::new(x as u64)
                        }
                    }
                }
            )*
        };
    }
    impl_from_signed!(i8, i16, i32, i64, i128, isize);
    macro_rules! impl_from_unsigned {
        ($($t:ty),*) => {
            $(
                impl<const P: u64> From<$t> for Fp<P> {
                    fn from(x: $t) -> Self { Self::new(x as u64) }
                }
            )*
        };
    }
    impl_from_unsigned!(u8, u16, u32, u64, u128, usize);
    impl<const P: u64> AddAssign<Fp<P>> for Fp<P> {
        fn add_assign(&mut self, rhs: Fp<P>) {
            self.value += rhs.value;
            if self.value >= P {
                self.value -= P;
            }
        }
    }
    impl<const P: u64> SubAssign<Fp<P>> for Fp<P> {
        fn sub_assign(&mut self, rhs: Fp<P>) {
            if self.value < rhs.value {
                self.value += P;
            }
            self.value -= rhs.value;
        }
    }
    impl<const P: u64> MulAssign<Fp<P>> for Fp<P> {
        fn mul_assign(&mut self, rhs: Fp<P>) {
            self.value = self.value * rhs.value % P;
        }
    }
    #[allow(clippy::suspicious_op_assign_impl)]
    impl<const P: u64> DivAssign<Fp<P>> for Fp<P> {
        fn div_assign(&mut self, rhs: Fp<P>) {
            *self *= rhs.inv()
        }
    }
    macro_rules! fp_forward_ops {
        ($(
            $trait:ident,
            $trait_assign:ident,
            $fn:ident,
            $fn_assign:ident,
        )*) => {$(
            impl<const P: u64> $trait_assign<&Fp<P>> for Fp<P> {
                fn $fn_assign(&mut self, rhs: &Fp<P>) {
                    self.$fn_assign(*rhs);
                }
            }
            impl<const P: u64, T: Into<Fp<P>>> $trait<T> for Fp<P> {
                type Output = Fp<P>;
                fn $fn(mut self, rhs: T) -> Self::Output {
                    self.$fn_assign(rhs.into());
                    self
                }
            }
            impl<const P: u64> $trait<&Fp<P>> for Fp<P> {
                type Output = Fp<P>;
                fn $fn(self, rhs: &Fp<P>) -> Self::Output {
                    self.$fn(*rhs)
                }
            }
            impl<const P: u64, T: Into<Fp<P>>> $trait<T> for &Fp<P> {
                type Output = Fp<P>;
                fn $fn(self, rhs: T) -> Self::Output {
                    (*self).$fn(rhs.into())
                }
            }
            impl<const P: u64> $trait<&Fp<P>> for &Fp<P> {
                type Output = Fp<P>;
                fn $fn(self, rhs: &Fp<P>) -> Self::Output {
                    (*self).$fn(*rhs)
                }
            }
        )*};
    }
    fp_forward_ops! {
        Add, AddAssign, add, add_assign,
        Sub, SubAssign, sub, sub_assign,
        Mul, MulAssign, mul, mul_assign,
        Div, DivAssign, div, div_assign,
    }
    impl<const P: u64> Neg for Fp<P> {
        type Output = Fp<P>;

        fn neg(mut self) -> Self::Output {
            if self.value > 0 {
                self.value = P - self.value;
            }
            self
        }
    }
    impl<const P: u64> Sum for Fp<P> {
        fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
            iter.fold(Self::new(0), |acc, x| acc + x)
        }
    }
    impl<'a, const P: u64> Sum<&'a Self> for Fp<P> {
        fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self {
            iter.copied().sum()
        }
    }
    impl<const P: u64> Product for Fp<P> {
        fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
            iter.fold(Self::new(1), |acc, x| acc * x)
        }
    }
    impl<'a, const P: u64> Product<&'a Self> for Fp<P> {
        fn product<I: Iterator<Item = &'a Self>>(iter: I) -> Self {
            iter.copied().product()
        }
    }
}
// }}}
// lg {{{
// https://ngtkana.github.io/ac-adapter-rs/lg/index.html

#[allow(dead_code)]
mod lg {
    use std::borrow::Borrow;
    use std::fmt;
    use std::iter::once;
    #[macro_export]
    macro_rules! lg {
        (@contents $head:expr $(, $tail:expr)*) => {{
            $crate::__lg_internal!($head);
            $(
                eprint!(",");
                $crate::__lg_internal!($tail);
            )*
            eprintln!();
        }};
        ($($expr:expr),* $(,)?) => {{
            eprint!("{}\u{276f}", line!());
            $crate::lg!(@contents $($expr),*)
        }};
    }
    #[doc(hidden)]
    #[macro_export]
    macro_rules! __lg_internal {
        ($value:expr) => {{
            match $value {
                head => {
                    eprint!(
                        " {} = {}",
                        stringify!($value),
                        $crate::lg::__quiet(format!("{:?}", &head))
                    );
                }
            }
        }};
    }
    #[macro_export]
    macro_rules! rows {
        {
            $index_label:literal,
            $(@offset $offset:expr,)?
            $(@verticalbar $verticalbar:expr,)*
            $($(@$label:literal =>)? $values:expr),* $(,)?
        } => {{
            #![allow(unused_assignments)]
            let mut rows = $crate::lg::Rows::default();
            rows.line_number(line!());
            $(rows.offset($offset);)?
            $(rows.verticalbar($verticalbar);)*
            rows.index_label($index_label);
            $({
                let mut label = stringify!($values).to_string();
                if label.starts_with("&") {
                    label = label[1..].to_string();
                }
                $({
                    let label_: &'static str = $label;
                    label = label_.to_string();
                })?
                rows.row(label, $values);
            })*
            eprintln!("{}", rows.to_string_table());
        }};
    }
    #[macro_export]
    macro_rules! table {
        {
            $(@$name:literal => )? $values:expr $(,)?
        } => {{
            #![allow(unused_assignments)]
            let mut name = stringify!($values).to_string();
            if name.starts_with("&") {
                name = name[1..].to_string();
            }
            $({
                let name_: &'static str = $name;
                name = name_.to_string();
            })?
            let mut rows = $crate::lg::Rows::default();
            rows.line_number(line!());
            rows.table_name(name);
            #[allow(array_into_iter)]
            for (i, row) in $values.into_iter().enumerate() {
                rows.row(i.to_string(), row);
            }
            eprintln!("{}", rows.to_string_table());
        }};
    }
    #[doc(hidden)]
    pub fn __quiet(s: impl AsRef<str>) -> String {
        s.as_ref()
            .replace("340282366920938463463374607431768211455", "*") // u128
            .replace("170141183460469231731687303715884105727", "*") // i128
            .replace("18446744073709551615", "*") // u64
            .replace("9223372036854775807", "*") // i64
            .replace("-9223372036854775808", "*") // i64
            .replace("4294967295", "*") // u32
            .replace("2147483647", "*") // i32
            .replace("-2147483648", "*") // i32
            .replace("None", "*")
            .replace("Some", "")
            .replace("true", "#")
            .replace("false", ".")
            .replace(['"', '\''], "")
    }
    #[doc(hidden)]
    #[derive(Default)]
    pub struct Rows {
        line_number: String,
        index_label: String,
        offset: usize,
        verticalbars: Vec<usize>,
        table_name: String,
        rows: Vec<Row>,
    }
    impl Rows {
        pub fn line_number(&mut self, line_number: u32) -> &mut Self {
            self.line_number = format!("{}", line_number);
            self
        }

        pub fn index_label(&mut self, index_label: impl Into<String>) -> &mut Self {
            self.index_label = index_label.into();
            self
        }

        pub fn offset(&mut self, offset: usize) -> &mut Self {
            self.offset = offset;
            self
        }

        pub fn verticalbar(&mut self, verticalbar: impl IntoIterator<Item = usize>) -> &mut Self {
            self.verticalbars.extend(verticalbar);
            self
        }

        pub fn table_name(&mut self, table_name: impl Into<String>) -> &mut Self {
            self.table_name = table_name.into();
            self
        }

        pub fn row(
            &mut self,
            label: impl Into<String>,
            values: impl IntoIterator<Item = impl fmt::Debug>,
        ) -> &mut Self {
            self.rows.push(Row {
                label: label.into(),
                values: values
                    .into_iter()
                    .map(|value| __quiet(format!("{:?}", value)))
                    .collect(),
            });
            self
        }

        pub fn to_string_table(self) -> StringTable {
            let Self {
                line_number,
                index_label,
                offset,
                verticalbars,
                table_name,
                rows,
            } = self;
            let w = rows
                .iter()
                .map(|row| row.values.len())
                .max()
                .unwrap_or_default();
            let mut verticalbar_count = vec![0; w + 1];
            for &v in &verticalbars {
                if (offset..=offset + w).contains(&v) {
                    verticalbar_count[v - offset] += 1;
                }
            }
            StringTable {
                head: StringRow {
                    label: format!(
                        "{line_number}❯ {table_name}{index_label}",
                        index_label = if index_label.is_empty() {
                            String::new()
                        } else {
                            format!("[{}]", index_label)
                        }
                    ),
                    values: (offset..offset + w)
                        .map(|index| index.to_string())
                        .collect(),
                },
                body: rows
                    .iter()
                    .map(|row| StringRow {
                        label: row.label.clone(),
                        values: row.values.clone(),
                    })
                    .collect(),
                verticalbar_count,
            }
        }
    }
    struct Row {
        label: String,
        values: Vec<String>,
    }
    #[doc(hidden)]
    pub struct StringTable {
        head: StringRow,
        body: Vec<StringRow>,
        verticalbar_count: Vec<usize>,
    }
    impl fmt::Display for StringTable {
        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            let Self {
                head,
                body,
                verticalbar_count,
            } = self;
            let w = body
                .iter()
                .map(|row| row.values.len())
                .max()
                .unwrap_or_default();
            let label_width = once(head.label.chars().count())
                .chain(body.iter().map(|row| row.label.chars().count()))
                .max()
                .unwrap();
            let value_width = (0..w)
                .map(|j| {
                    once(j.to_string().len())
                        .chain(
                            body.iter()
                                .map(|row| row.values.get(j).map_or(0, |s| s.chars().count())),
                        )
                        .max()
                        .unwrap()
                })
                .collect::<Vec<_>>();
            // Heading
            gray(f)?;
            write!(
                f,
                "{}",
                head.to_string(label_width, &value_width, verticalbar_count, true)
            )?;
            resetln(f)?;
            // Body
            for row in body {
                write!(
                    f,
                    "{}",
                    row.to_string(label_width, &value_width, verticalbar_count, false)
                )?;
                writeln!(f)?;
            }
            Ok(())
        }
    }
    struct StringRow {
        label: String,
        values: Vec<String>,
    }
    impl StringRow {
        fn to_string(
            &self,
            label_width: usize,
            value_width: &[usize],
            varticalbars_count: &[usize],
            label_align_left: bool,
        ) -> String {
            let Self { label, values } = self;
            let w = value_width.len();
            let mut s = String::new();
            s.push_str(&if label_align_left {
                format!("{label:<label_width$} |")
            } else {
                format!("{label:^label_width$} |")
            });
            for j in 0..w {
                let value_width = value_width[j];
                s.push_str("|".repeat(varticalbars_count[j]).as_str());
                if varticalbars_count[j] == 0 && j != 0 && value_width <= 1 {
                    s.push(' ');
                }
                match values.get(j) {
                    Some(value) => {
                        s.push_str(&format!(" {value:>value_width$}",));
                    }
                    None => {
                        s.push_str(" ".repeat(value_width + 1).as_str());
                    }
                }
            }
            s
        }
    }
    const GRAY: &str = "\x1b[48;2;127;127;127;37m";
    const RESET: &str = "\x1b[0m";
    fn gray(f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{GRAY}")
    }
    fn resetln(f: &mut fmt::Formatter<'_>) -> fmt::Result {
        writeln!(f, "{RESET}")
    }
    pub fn bools<B, I>(iter: I) -> String
    where
        B: Borrow<bool>,
        I: IntoIterator<Item = B>,
    {
        format!(
            "[{}]",
            iter.into_iter()
                .map(|b| ['.', '#'][usize::from(*(b.borrow()))])
                .collect::<String>(),
        )
    }
}
// }}}
0