結果

問題 No.2756 GCD Teleporter
ユーザー hato336hato336
提出日時 2024-05-10 22:08:50
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 3,668 bytes
コンパイル時間 164 ms
コンパイル使用メモリ 82,780 KB
実行使用メモリ 161,056 KB
最終ジャッジ日時 2024-12-20 05:49:59
合計ジャッジ時間 48,862 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 30 TLE * 6
権限があれば一括ダウンロードができます

ソースコード

diff #

import collections,sys
def gcd(a, b):
    while a:
        a, b = b%a, a
    return b


def is_prime(n):
    if n == 2:
        return 1
    if n == 1 or n%2 == 0:
        return 0

    m = n - 1
    lsb = m & -m
    s = lsb.bit_length()-1
    d = m // lsb

    test_numbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]

    for a in test_numbers:
        if a == n:
            continue
        x = pow(a,d,n)
        r = 0
        if x == 1:
            continue
        while x != m:
            x = pow(x,2,n)
            r += 1
            if x == 1 or r == s:
                return 0
    return 1


def find_prime_factor(n):
    if n%2 == 0:
        return 2

    m = int(n**0.125)+1

    for c in range(1,n):
        f = lambda a: (pow(a,2,n)+c)%n
        y = 0
        g = q = r = 1
        k = 0
        while g == 1:
            x = y
            while k < 3*r//4:
                y = f(y)
                k += 1
            while k < r and g == 1:
                ys = y
                for _ in range(min(m, r-k)):
                    y = f(y)
                    q = q*abs(x-y)%n
                g = gcd(q,n)
                k += m
            k = r
            r *= 2
        if g == n:
            g = 1
            y = ys
            while g == 1:
                y = f(y)
                g = gcd(abs(x-y),n)
        if g == n:
            continue
        if is_prime(g):
            return g
        elif is_prime(n//g):
            return n//g
        else:
            return find_prime_factor(g)


def factorize(n):
    res = set()
    while not is_prime(n) and n > 1:  # nが合成数である間nの素因数の探索を繰り返す
        p = find_prime_factor(n)
        s = 0
        while n%p == 0:  # nが素因数pで割れる間割り続け、出力に追加
            n //= p
            s += 1
        res.add(p)
    if n > 1:  # n>1であればnは素数なので出力に追加
        res.add(n)
    return res

class UnionFind():
    def __init__(self, n):
        self.n = n
        self.parents = [-1] * n

    def find(self, x):
        if self.parents[x] < 0:
            return x
        else:
            self.parents[x] = self.find(self.parents[x])
            return self.parents[x]

    def union(self, x, y):
        x = self.find(x)
        y = self.find(y)

        if x == y:
            return

        if self.parents[x] > self.parents[y]:
            x, y = y, x

        self.parents[x] += self.parents[y]
        self.parents[y] = x

    def size(self, x):
        return -self.parents[self.find(x)]

    def same(self, x, y):
        return self.find(x) == self.find(y)

    def members(self, x):
        root = self.find(x)
        return [i for i in range(self.n) if self.find(i) == root]

    def roots(self):
        return [i for i, x in enumerate(self.parents) if x < 0]

    def group_count(self):
        return len(self.roots())

    def all_group_members(self):
        group_members = collections.defaultdict(list)
        for member in range(self.n):
            group_members[self.find(member)].append(member)
        return group_members

    def __str__(self):
        return ''.join(f'{r}: {m}' for r, m in self.all_group_members().items())
n = int(input())
a = list(map(int,input().split()))
ans = 10**18
uf = UnionFind(n)
c = [[] for i in range(2*10**5+1)]
for i in range(n):
    x = factorize(a[i])
    for j in x:
        c[j].append(i)
        ans = min(ans,j)
for i in range(len(c)):
    if not c[i]:
        continue
    for j in range(len(c[i])-1):
        uf.union(c[i][j],c[i][j+1])
    uf.union(c[i][0],c[i][-1])
    



print(min(ans * uf.group_count() - ans,2*uf.group_count()))
0