結果
問題 | No.2754 Cumulate and Drop |
ユーザー |
|
提出日時 | 2024-05-10 22:14:27 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 34 ms / 2,000 ms |
コード長 | 10,938 bytes |
コンパイル時間 | 3,149 ms |
コンパイル使用メモリ | 251,496 KB |
実行使用メモリ | 8,704 KB |
最終ジャッジ日時 | 2024-12-20 05:54:35 |
合計ジャッジ時間 | 4,757 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 17 |
ソースコード
// #pragma GCC optimize("O3,unroll-loops")#include <bits/stdc++.h>// #include <x86intrin.h>using namespace std;#if __cplusplus >= 202002Lusing namespace numbers;#endiftemplate<class data_t, data_t _mod>struct modular_fixed_base{#define IS_INTEGRAL(T) (is_integral_v<T> || is_same_v<T, __int128_t> || is_same_v<T, __uint128_t>)#define IS_UNSIGNED(T) (is_unsigned_v<T> || is_same_v<T, __uint128_t>)static_assert(IS_UNSIGNED(data_t));static_assert(_mod >= 1);static constexpr bool VARIATE_MOD_FLAG = false;static constexpr data_t mod(){return _mod;}template<class T>static vector<modular_fixed_base> precalc_power(T base, int SZ){vector<modular_fixed_base> res(SZ + 1, 1);for(auto i = 1; i <= SZ; ++ i) res[i] = res[i - 1] * base;return res;}static vector<modular_fixed_base> _INV;static void precalc_inverse(int SZ){if(_INV.empty()) _INV.assign(2, 1);for(auto x = _INV.size(); x <= SZ; ++ x) _INV.push_back(_mod / x * -_INV[_mod % x]);}// _mod must be a primestatic modular_fixed_base _primitive_root;static modular_fixed_base primitive_root(){if(_primitive_root) return _primitive_root;if(_mod == 2) return _primitive_root = 1;if(_mod == 998244353) return _primitive_root = 3;data_t divs[20] = {};divs[0] = 2;int cnt = 1;data_t x = (_mod - 1) / 2;while(x % 2 == 0) x /= 2;for(auto i = 3; 1LL * i * i <= x; i += 2){if(x % i == 0){divs[cnt ++] = i;while(x % i == 0) x /= i;}}if(x > 1) divs[cnt ++] = x;for(auto g = 2; ; ++ g){bool ok = true;for(auto i = 0; i < cnt; ++ i){if(modular_fixed_base(g).power((_mod - 1) / divs[i]) == 1){ok = false;break;}}if(ok) return _primitive_root = g;}}constexpr modular_fixed_base(){ }modular_fixed_base(const double &x){ data = _normalize(llround(x)); }modular_fixed_base(const long double &x){ data = _normalize(llround(x)); }template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base(const T &x){ data = _normalize(x); }template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> static data_t _normalize(const T &x){int sign = x >= 0 ? 1 : -1;data_t v = _mod <= sign * x ? sign * x % _mod : sign * x;if(sign == -1 && v) v = _mod - v;return v;}template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> operator T() const{ return data; }modular_fixed_base &operator+=(const modular_fixed_base &otr){ if((data += otr.data) >= _mod) data -= _mod; return *this; }modular_fixed_base &operator-=(const modular_fixed_base &otr){ if((data += _mod - otr.data) >= _mod) data -= _mod; return *this; }template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base &operator+=(const T &otr){ return *this +=modular_fixed_base(otr); }template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base &operator-=(const T &otr){ return *this -=modular_fixed_base(otr); }modular_fixed_base &operator++(){ return *this += 1; }modular_fixed_base &operator--(){ return *this += _mod - 1; }modular_fixed_base operator++(int){ modular_fixed_base result(*this); *this += 1; return result; }modular_fixed_base operator--(int){ modular_fixed_base result(*this); *this += _mod - 1; return result; }modular_fixed_base operator-() const{ return modular_fixed_base(_mod - data); }modular_fixed_base &operator*=(const modular_fixed_base &rhs){if constexpr(is_same_v<data_t, unsigned int>) data = (unsigned long long)data * rhs.data % _mod;else if constexpr(is_same_v<data_t, unsigned long long>){long long res = data * rhs.data - _mod * (unsigned long long)(1.L / _mod * data * rhs.data);data = res + _mod * (res < 0) - _mod * (res >= (long long)_mod);}else data = _normalize(data * rhs.data);return *this;}template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>modular_fixed_base &inplace_power(T e){if(e == 0) return *this = 1;if(data == 0) return *this = {};if(data == 1 || e == 1) return *this;if(data == mod() - 1) return e % 2 ? *this : *this = -*this;if(e < 0) *this = 1 / *this, e = -e;if(e == 1) return *this;modular_fixed_base res = 1;for(; e; *this *= *this, e >>= 1) if(e & 1) res *= *this;return *this = res;}template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>modular_fixed_base power(T e) const{return modular_fixed_base(*this).inplace_power(e);}modular_fixed_base &operator/=(const modular_fixed_base &otr){make_signed_t<data_t> a = otr.data, m = _mod, u = 0, v = 1;if(a < _INV.size()) return *this *= _INV[a];while(a){make_signed_t<data_t> t = m / a;m -= t * a; swap(a, m);u -= t * v; swap(u, v);}assert(m == 1);return *this *= u;}#define ARITHMETIC_OP(op, apply_op)\modular_fixed_base operator op(const modular_fixed_base &x) const{ return modular_fixed_base(*this) apply_op x; }\template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\modular_fixed_base operator op(const T &x) const{ return modular_fixed_base(*this) apply_op modular_fixed_base(x); }\template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\friend modular_fixed_base operator op(const T &x, const modular_fixed_base &y){ return modular_fixed_base(x) apply_op y; }ARITHMETIC_OP(+, +=) ARITHMETIC_OP(-, -=) ARITHMETIC_OP(*, *=) ARITHMETIC_OP(/, /=)#undef ARITHMETIC_OP#define COMPARE_OP(op)\bool operator op(const modular_fixed_base &x) const{ return data op x.data; }\template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\bool operator op(const T &x) const{ return data op modular_fixed_base(x).data; }\template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\friend bool operator op(const T &x, const modular_fixed_base &y){ return modular_fixed_base(x).data op y.data; }COMPARE_OP(==) COMPARE_OP(!=) COMPARE_OP(<) COMPARE_OP(<=) COMPARE_OP(>) COMPARE_OP(>=)#undef COMPARE_OPfriend istream &operator>>(istream &in, modular_fixed_base &number){long long x;in >> x;number.data = modular_fixed_base::_normalize(x);return in;}//#define _SHOW_FRACTIONfriend ostream &operator<<(ostream &out, const modular_fixed_base &number){out << number.data;#if defined(LOCAL) && defined(_SHOW_FRACTION)cerr << "(";for(auto d = 1; ; ++ d){if((number * d).data <= 1000000){cerr << (number * d).data;if(d != 1) cerr << "/" << d;break;}else if((-number * d).data <= 1000000){cerr << "-" << (-number * d).data;if(d != 1) cerr << "/" << d;break;}}cerr << ")";#endifreturn out;}data_t data = 0;#undef _SHOW_FRACTION#undef IS_INTEGRAL#undef IS_UNSIGNED};template<class data_t, data_t _mod> vector<modular_fixed_base<data_t, _mod>> modular_fixed_base<data_t, _mod>::_INV;template<class data_t, data_t _mod> modular_fixed_base<data_t, _mod> modular_fixed_base<data_t, _mod>::_primitive_root;const unsigned int mod = (119 << 23) + 1; // 998244353// const unsigned int mod = 1e9 + 7; // 1000000007// const unsigned int mod = 1e9 + 9; // 1000000009// const unsigned long long mod = (unsigned long long)1e18 + 9;using modular = modular_fixed_base<decay_t<decltype(mod)>, mod>;template<class T>struct combinatorics{#ifdef LOCAL#define ASSERT(c) assert(c)#else#define ASSERT(c) 42#endif// O(n)static vector<T> precalc_fact(int n){vector<T> f(n + 1, 1);for(auto i = 1; i <= n; ++ i) f[i] = f[i - 1] * i;return f;}// O(n * m)static vector<vector<T>> precalc_C(int n, int m){vector<vector<T>> c(n + 1, vector<T>(m + 1));for(auto i = 0; i <= n; ++ i) for(auto j = 0; j <= min(i, m); ++ j) c[i][j] = i && j ? c[i - 1][j - 1] + c[i - 1][j] : T(1);return c;}int SZ = 0;vector<T> inv, fact, invfact;combinatorics(){ }// O(SZ)combinatorics(int SZ): SZ(SZ), inv(SZ + 1, 1), fact(SZ + 1, 1), invfact(SZ + 1, 1){for(auto i = 1; i <= SZ; ++ i) fact[i] = fact[i - 1] * i;invfact[SZ] = 1 / fact[SZ];for(auto i = SZ - 1; i >= 0; -- i){invfact[i] = invfact[i + 1] * (i + 1);inv[i + 1] = invfact[i + 1] * fact[i];}}// O(1)T C(int n, int k) const{ASSERT(0 <= min(n, k) && max(n, k) <= SZ);return n >= k ? fact[n] * invfact[k] * invfact[n - k] : T{0};}// O(1)T P(int n, int k) const{ASSERT(0 <= min(n, k) && max(n, k) <= SZ);return n >= k ? fact[n] * invfact[n - k] : T{0};}// O(1)T H(int n, int k) const{ASSERT(0 <= min(n, k));if(n == 0) return 0;return C(n + k - 1, k);}// Multinomial CoefficientT mC(int n, const vector<int> &a) const{ASSERT((int)a.size() >= 2 && accumulate(a.begin(), a.end(), 0) == n);ASSERT(0 <= min(n, *min_element(a.begin(), a.end())) && max(n, *max_element(a.begin(), a.end())) <= SZ);T res = fact[n];for(auto x: a) res *= invfact[x];return res;}// Multinomial Coefficienttemplate<class... U, typename enable_if<(is_integral_v<U> && ...)>::type* = nullptr>T mC(int n, U... pack){ASSERT(sizeof...(pack) >= 2 && (... + pack) == n);return (fact[n] * ... * invfact[pack]);}// O(min(k, n - k))T naive_C(long long n, long long k) const{ASSERT(0 <= min(n, k));if(n < k) return 0;T res = 1;k = min(k, n - k);ASSERT(k <= SZ);for(auto i = n; i > n - k; -- i) res *= i;return res * invfact[k];}// O(k)T naive_P(long long n, int k) const{ASSERT(0 <= min<long long>(n, k));if(n < k) return 0;T res = 1;for(auto i = n; i > n - k; -- i) res *= i;return res;}// O(k)T naive_H(long long n, int k) const{ASSERT(0 <= min<long long>(n, k));return naive_C(n + k - 1, k);}// O(1)bool parity_C(long long n, long long k) const{ASSERT(0 <= min(n, k));return n >= k ? (n & k) == k : false;}// Number of ways to place n '('s and k ')'s starting with m copies of '(' such that in each prefix, number of '(' is equal or greater than ')'// Catalan(n, n, 0): n-th catalan number// Catalan(s, s+k-1, k-1): sum of products of k catalan numbers where the index of product sums up to s.// O(1)T Catalan(int n, int k, int m = 0) const{ASSERT(0 <= min({n, k, m}));return k <= m ? C(n + k, k) : k <= n + m ? C(n + k, k) - C(n + k, k - m - 1) : T();}#undef ASSERT};int main(){cin.tie(0)->sync_with_stdio(0);cin.exceptions(ios::badbit | ios::failbit);int n;cin >> n;vector<modular> a(n);copy_n(istream_iterator<modular>(cin), n, a.begin());if(n == 1){cout << a[0] << "\n";return 0;}combinatorics<modular> C(n << 1);modular res = 0;for(auto i = 0; i < n; ++ i){res += a[i] * C.Catalan(n - 1 - i, n - 2, min(i, n - 2));}cout << res << "\n";return 0;}/*(1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), (0,0,0,0,1)(1,1,0,0,0), (1,1,1,0,0), (1,1,1,1,0), (1,1,1,1,1)(2,2,1,0,0), (3,3,2,1,0), (4,4,3,2,1)(5,5,3,1,0), (9,9,6,3,1)*/