結果
| 問題 |
No.2756 GCD Teleporter
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-05-10 22:24:00 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 98 ms / 2,000 ms |
| コード長 | 5,015 bytes |
| コンパイル時間 | 3,356 ms |
| コンパイル使用メモリ | 261,548 KB |
| 実行使用メモリ | 24,424 KB |
| 最終ジャッジ日時 | 2024-12-20 06:10:00 |
| 合計ジャッジ時間 | 6,702 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 36 |
ソースコード
// #pragma GCC optimize("O3,unroll-loops")
#include <bits/stdc++.h>
// #include <x86intrin.h>
using namespace std;
#if __cplusplus >= 202002L
using namespace numbers;
#endif
struct number_theory{
int SZ;
vector<int> lpf, prime;
number_theory(int SZ): SZ(SZ), lpf(SZ + 1){ // O(SZ)
lpf[0] = lpf[1] = numeric_limits<int>::max() / 2;
for(auto i = 2; i <= SZ; ++ i){
if(!lpf[i]) lpf[i] = i, prime.push_back(i);
for(auto j = 0; j < (int)prime.size() && prime[j] <= lpf[i] && prime[j] * i <= SZ; ++ j) lpf[prime[j] * i] = prime[j];
}
}
vector<int> precalc_mobius() const{
vector<int> mobius(SZ + 1, 1);
for(auto i = 2; i <= SZ; ++ i){
if(i / lpf[i] % lpf[i]) mobius[i] = -mobius[i / lpf[i]];
else mobius[i] = 0;
}
return mobius;
}
vector<int> precalc_phi() const{
vector<int> phi(SZ + 1, 1);
for(auto i = 2; i <= SZ; ++ i){
if(i / lpf[i] % lpf[i]) phi[i] = phi[i / lpf[i]] * (lpf[i] - 1);
else phi[i] = phi[i / lpf[i]] * lpf[i];
}
return phi;
}
// Returns {gcd(0, n), ..., gcd(SZ, n)}
vector<int> precalc_gcd(int n) const{
vector<int> res(SZ + 1, 1);
res[0] = n;
for(auto x = 2; x <= SZ; ++ x) res[x] = n % (lpf[x] * res[x / lpf[x]]) ? res[x / lpf[x]] : lpf[x] * res[x / lpf[x]];
return res;
}
bool is_prime(int x) const{
assert(0 <= x && x <= SZ);
return lpf[x] == x;
}
int mu_large(long long x) const{ // O(sqrt(x))
int res = 1;
for(auto i = 2LL; i * i <= x; ++ i) if(x % i == 0){
if(x / i % i) return 0;
x /= i, res = -res;
}
if(x > 1) res = -res;
return res;
}
long long phi_large(long long x) const{ // O(sqrt(x))
long long res = x;
for(auto i = 2LL; i * i <= x; ++ i) if(x % i == 0){
while(x % i == 0) x /= i;
res -= res / i;
}
if(x > 1) res -= res / x;
return res;
}
// returns an array is_prime of length high-low where is_prime[i] = [low+i is a prime]
vector<int> sieve(long long low, long long high) const{
assert(high - 1 <= 1LL * SZ * SZ);
vector<int> is_prime(high - low, true);
for(auto p: prime) for(auto x = max(1LL * p, (low + p - 1) / p) * p; x < high; x += p) is_prime[x - low] = false;
for(auto x = 1; x >= low; -- x) is_prime[x - low] = false;
return is_prime;
}
};
template<bool Enable_small_to_large = true>
struct disjoint_set{
int n, _group_count;
vector<int> p;
vector<list<int>> group;
disjoint_set(){ }
disjoint_set(int n): n(n), _group_count(n), p(n, -1), group(n){ assert(n >= 0);
for(auto i = 0; i < n; ++ i) group[i] = {i};
}
int make_set(){
p.push_back(-1);
group.push_back(list<int>{n});
++ _group_count;
return n ++;
}
int root(int u){
return p[u] < 0 ? u : p[u] = root(p[u]);
}
bool share(int a, int b){
return root(a) == root(b);
}
int size(int u){
return -p[root(u)];
}
bool merge(int u, int v){
u = root(u), v = root(v);
if(u == v) return false;
-- _group_count;
if constexpr(Enable_small_to_large) if(p[u] > p[v]) swap(u, v);
p[u] += p[v], p[v] = u;
group[u].splice(group[u].end(), group[v]);
return true;
}
bool merge(int u, int v, auto act){
u = root(u), v = root(v);
if(u == v) return false;
-- _group_count;
bool swapped = false;
if constexpr(Enable_small_to_large) if(p[u] > p[v]) swap(u, v), swapped = true;
act(u, v, swapped);
p[u] += p[v], p[v] = u;
group[u].splice(group[u].end(), group[v]);
return true;
}
int group_count() const{
return _group_count;
}
const list<int> &group_of(int u){
return group[root(u)];
}
vector<vector<int>> group_up(){
vector<vector<int>> g(n);
for(auto i = 0; i < n; ++ i) g[root(i)].push_back(i);
g.erase(remove_if(g.begin(), g.end(), [&](auto &s){ return s.empty(); }), g.end());
return g;
}
void clear(){
_group_count = n;
fill(p.begin(), p.end(), -1);
for(auto i = 0; i < n; ++ i) group[i] = {i};
}
friend ostream &operator<<(ostream &out, disjoint_set dsu){
auto gs = dsu.group_up();
out << "{";
if(!gs.empty()) for(auto i = 0; i < (int)gs.size(); ++ i){
out << "{";
for(auto j = 0; j < (int)gs[i].size(); ++ j){
out << gs[i][j];
if(j + 1 < (int)gs[i].size()) out << ", ";
}
out << "}";
if(i + 1 < (int)gs.size()) out << ", ";
}
return out << "}";
}
};
int main(){
cin.tie(0)->sync_with_stdio(0);
cin.exceptions(ios::badbit | ios::failbit);
number_theory nt{200'000};
int n;
cin >> n;
vector<vector<int>> appear(200'001);
for(auto i = 0; i < n; ++ i){
int x;
cin >> x;
while(x >= 2){
int p = nt.lpf[x];
appear[p].push_back(i);
while(x % p == 0){
x /= p;
}
}
}
disjoint_set dsu(n);
for(auto p = 2; p <= 200'000; ++ p){
for(auto i = 0; i < (int)appear[p].size() - 1; ++ i){
dsu.merge(appear[p][i], appear[p][i + 1]);
}
}
int size = dsu.group_count();
if(ranges::all_of(appear, [&](auto &a){ return a.empty(); })){
cout << 2 * size << "\n";
}
else if(!appear[2].empty()){
cout << 2 * (size - 1) << "\n";
}
else{
int p = 3;
while(appear[p].empty()){
++ p;
}
cout << min(2LL * size, 1LL * p * (size - 1)) << "\n";
}
return 0;
}
/*
*/