結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
Michirakara
|
| 提出日時 | 2024-05-17 13:30:24 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,335 bytes |
| コンパイル時間 | 3,806 ms |
| コンパイル使用メモリ | 278,216 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-12-20 11:42:50 |
| 合計ジャッジ時間 | 4,821 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 9 WA * 1 |
ソースコード
#line 1 "tests/math/is_prime.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/3030"
#line 1 "math/montgomery-reduction.hpp"
#include <iostream>
namespace libmcr {
class montgomery_reduction {
__uint128_t N;
__uint128_t N_dash;
__uint128_t R2;
unsigned long long redc(__uint128_t t) {
unsigned long long m = N_dash * t;
__uint128_t to_ret = (t + N * __uint128_t(m)) >> 64;
return to_ret < N ? to_ret : to_ret - N;
}
public:
montgomery_reduction(unsigned long long mod) : N(mod) {
N_dash = 0;
__uint128_t t = 0;
__uint128_t vi = 1;
for (int i = 0; i < 64; i++) {
if ((t & 1) == 0) {
t += N;
N_dash += vi;
}
t >>= 1;
vi <<= 1;
}
R2 = (__uint128_t)(0ull - mod) * (__uint128_t)(0ull - mod) % N;
}
unsigned long long mult(__uint128_t a, __uint128_t b) {
return redc(redc(a * b) * R2);
}
unsigned long long pow(__uint128_t a, __uint128_t b) {
__uint128_t p = redc(R2 * a);
__uint128_t x = redc(R2);
__uint128_t y = b;
while (y) {
if (y & 1) {
x = redc(x * p);
}
p = redc(p * p);
y >>= 1;
}
return redc(x);
}
};
} // namespace libmcr
#line 1 "random/xorshift.hpp"
#include <ctime>
namespace libmcr {
unsigned int xorshift128_32() {
static unsigned int x = 123456789, y = 362436069, z = 521288629,
w = std::time(nullptr);
unsigned int t = x ^ (x << 11);
x = y;
y = z;
z = w;
w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
return w;
}
unsigned long long xorshift128_64() {
static unsigned long long x = 123456789, y = 362436069, z = 521288629,
w = std::time(nullptr);
unsigned long long t = x ^ (x << 11);
x = y;
y = z;
z = w;
w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
return w;
}
} // namespace libmcr
#line 3 "math/prime.hpp"
#include <algorithm>
#include <concepts>
#include <numeric>
namespace libmcr {
namespace internal {
bool fermat_test(unsigned long long n, const size_t REP_NUM) {
montgomery_reduction MR(n);
for (size_t rep = 0; rep < REP_NUM; rep++) {
unsigned long long a = xorshift128_64() % (n - 1) + 1;
if (MR.pow(a, n - 1) != 1)
return false;
}
return true;
}
bool miller_rabin(unsigned long long n) {
if (n <= 1) {
return false;
}
unsigned long long k = 0;
unsigned long long m = n - 1;
while (!(m & 1)) {
k += 1;
m >>= 1;
}
montgomery_reduction MR(n);
for (unsigned long long a :
{2, 325, 9375, 28178, 450775, 9780504, 1795265022}) {
unsigned long long b = MR.pow(a, m);
bool flag = false;
if (a % n == 0)
flag = true;
if (b == 1) {
flag = true;
} else {
for (size_t rep2 = 0; rep2 < k; rep2++) {
if (b == n - 1) {
flag = true;
break;
}
b = MR.mult(b, b);
}
}
if (!flag)
return false;
}
return true;
}
} // namespace internal
bool is_prime(unsigned long long num) {
const unsigned long long SMALL_PRIMES[] = {2, 3, 5, 7, 11,
13, 17, 19, 23, 29};
if (num <= 29) {
for (unsigned long long i : SMALL_PRIMES) {
if (num == i)
return true;
}
return false;
}
if (!(num & 1))
return false;
const unsigned long long PRIME_PRODUCT = 3234846615;
if (std::gcd(PRIME_PRODUCT, num) != 1)
return false;
if (internal::fermat_test(num, 5) && internal::miller_rabin(num)) {
return true;
}
return false;
}
} // namespace libmcr
#line 4 "tests/math/is_prime.test.cpp"
#include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
for (int i = 0; i < n; i++) {
unsigned long long x;
cin >> x;
if(x<=2){
if(x==2)cout<<x<<' '<<1<<endl;
else cout<<x<<' '<<0<<endl;
}
cout << x << ' ' << int(libmcr::internal::miller_rabin(x)) << endl;
}
}
Michirakara