結果
問題 | No.2761 Substitute and Search |
ユーザー | ecottea |
提出日時 | 2024-05-17 21:46:34 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 832 ms / 4,000 ms |
コード長 | 17,321 bytes |
コンパイル時間 | 6,960 ms |
コンパイル使用メモリ | 312,768 KB |
実行使用メモリ | 77,440 KB |
最終ジャッジ日時 | 2024-05-17 21:46:49 |
合計ジャッジ時間 | 12,912 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 553 ms
77,056 KB |
testcase_05 | AC | 832 ms
77,056 KB |
testcase_06 | AC | 144 ms
77,184 KB |
testcase_07 | AC | 653 ms
77,440 KB |
testcase_08 | AC | 148 ms
77,056 KB |
testcase_09 | AC | 643 ms
77,440 KB |
testcase_10 | AC | 147 ms
77,056 KB |
testcase_11 | AC | 648 ms
77,312 KB |
testcase_12 | AC | 456 ms
77,312 KB |
testcase_13 | AC | 401 ms
77,440 KB |
testcase_14 | AC | 434 ms
77,312 KB |
testcase_15 | AC | 432 ms
77,312 KB |
ソースコード
// QCFium 法 #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = {1, 0, -1, 0}; // 4 近傍(下,右,上,左) int DY[4] = {0, 1, 0, -1}; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x)) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x)) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); } template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif //using mint = modint1000000007; using mint = modint998244353; //using mint = modint; // mint::set_mod(m); namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; } template <size_t N> inline int lsb(const bitset<N>& b) { return b._Find_first(); } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(v) #define dump_list(v) #define dump_mat(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す #endif //【フェニック木(アーベル群)】 /* * Fenwick_tree<S, op, o, inv>(int n) : O(n) * a[0..n) = o() で初期化する.要素はアーベル群 (S, op, o, inv) の元とする. * * Fenwick_tree<S, op, o, inv>(vS a) : O(n) * 配列 a[0..n) で初期化する. * * set(int i, S x) : O(log n) * a[i] = x とする. * * S get(int i) : O(log n) * a[i] を返す. * * S sum(int l, int r) : O(log n) * Σa[l..r) を返す.空なら o() を返す. * * add(int i, S x) : O(log n) * a[i] += x とする. * * int max_right(function<bool(S)>& f) : O(log n) * f( Σa[0..r) ) = true となる最大の r を返す. * 制約:f( o() ) = true,f は単調 */ template <class S, S(*op)(S, S), S(*o)(), S(*inv)(S)> class Fenwick_tree { // 参考:https://algo-logic.info/binary-indexed-tree/ // n : 要素数 int n; // v[i] : Σa[*..i] の値(i:1-indexed,v[0] は不使用) vector<S> v; // Σa[1..r] を返す.空なら o() を返す.(r:1-indexed) S sum_sub(int r) const { S res = o(); // 根に向かって累積 op() をとっていく. while (r > 0) { res = op(res, v[r]); // r の最下位ビットを 0 にすることで次の位置を得る. r -= r & -r; } return res; } public: // a[0..n) = o() で初期化する. Fenwick_tree(int n) : n(n), v(n + 1, o()) { // verify : https://judge.yosupo.jp/problem/range_kth_smallest } // 配列 a[0..n) で初期化する. Fenwick_tree(const vector<S>& a) : n(sz(a)), v(n + 1) { // verify : https://judge.yosupo.jp/problem/point_add_range_sum // 配列の値を仮登録する. rep(i, n) v[i + 1] = a[i]; // 正しい値になるよう根に向かって累積 op() をとっていく. for (int pow2 = 1; 2 * pow2 <= n; pow2 *= 2) { for (int i = 2 * pow2; i <= n; i += 2 * pow2) { v[i] = op(v[i], v[i - pow2]); } } } Fenwick_tree() : n(0) {} // a[i] = x とする.(i : 0-indexed) void set(int i, S x) { Assert(0 <= i && i < n); // 差分を求める. S d = op(x, inv(get(i))); add(i, d); } // a[i] を返す.(i : 0-indexed) S get(int i) const { Assert(0 <= i && i < n); return sum(i, i + 1); } // Σa[l..r) を返す.空なら o() を返す.(l, r : 0-indexed) S sum(int l, int r) const { // verify : https://judge.yosupo.jp/problem/point_add_range_sum chmax(l, 0); chmin(r, n); if (l >= r) return o(); // 0-indexed での半開区間 [l, r) は, // 1-indexed での閉区間 [l + 1, r] に対応する. // よって閉区間 [1, r] の総和から閉区間 [1, l] の総和を引けば良い. return op(sum_sub(r), inv(sum_sub(l))); } // a[i] += x とする.(i : 0-indexed) void add(int i, S x) { // verify : https://judge.yosupo.jp/problem/point_add_range_sum Assert(0 <= i && i < n); // i を 1-indexed に直す. i++; // 根に向かって値を op() していく. while (i <= n) { v[i] = op(v[i], x); // i の最下位ビットに 1 を加算することで次の位置を得る. i += i & -i; } } // f( Σa[0..r) ) = true となる最大の r を返す.(r : 0-indexed) int max_right(const function<bool(S)>& f) const { // verify : https://www.spoj.com/problems/ALLIN1/ S x = o(); // 注目している閉区間は [l+1, r] で幅は len int l = 0; for (int len = 1 << msb(n); len > 0; len >>= 1) { int r = l + len; auto nx = op(x, v[r]); if (r <= n && f(nx)) { x = nx; l = r; } } return l; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const Fenwick_tree& ft) { rep(i, ft.n) { os << ft.get(i) << " "; } return os; } #endif }; //【動的ローリングハッシュ(列)】 /* * Rolling_hash<STR>(STR s) : O(n) * 列 s[0..n) で初期化する. * 制約:STR は string,vector<T> など.ll 範囲の負数は扱えない. * * ull get(int l, int r) : O(log n) * 部分文字列 s[l..r) のハッシュ値を返す(空なら 0) * * void set(int i, ull x) : O(log n) * s[i] = x とする. * * 利用:【フェニック木(アーベル群)】 */ ull opdrh(ull x, ull y) { ull a = x + y, ah = a >> 61, al = a & ((1ULL << 61) - 1), res = ah + al; if (res >= ((1ULL << 61) - 1)) res -= ((1ULL << 61) - 1); return res; } ull odrh() { return 0ULL; } ull invdrh(ull a) { return ((1ULL << 61) - 1) ^ a; } template <class STR> class Dynamic_rolling_hash { // 参考 : https://qiita.com/keymoon/items/11fac5627672a6d6a9f6 static constexpr ull MASK30 = (1ULL << 30) - 1; static constexpr ull MASK31 = (1ULL << 31) - 1; static constexpr ull MOD = (1ULL << 61) - 1; // 法(素数) // a mod (2^61 - 1) を返す. inline ull get_mod(ull a) const { ull ah = a >> 61, al = a & MOD; ull res = ah + al; if (res >= MOD) res -= MOD; return res; } // x ≡ a b mod (2^61 - 1) なる x < 2^63 を返す(ただし a, b < 2^61) inline ull mul(ull a, ull b) const { ull ah = a >> 31, al = a & MASK31; ull bh = b >> 31, bl = b & MASK31; ull c = ah * bl + bh * al; ull ch = c >> 30, cl = c & MASK30; ull term1 = 2 * ah * bh; ull term2 = ch + (cl << 31); ull term3 = al * bl; return term1 + term2 + term3; // < 2^63 } static constexpr ull BASE = 1234567891011; // 適当な基数 static constexpr ull BASE_INV = 212042116942762790ULL; static constexpr ull SHIFT = 4295090752; // 適当なシフト // 列の長さ int n; // powB[i] : BASE^i vector<ull> powB, powB_inv; // v[i] : (s[i] + SHIFT) BASE^(-i) Fenwick_tree<ull, opdrh, odrh, invdrh> v; public: // 列 s[0..n) で初期化する. Dynamic_rolling_hash(const STR& s) : n(sz(s)), powB(n + 1), powB_inv(n + 1) { // verify : https://atcoder.jp/contests/abc331/tasks/abc331_f powB[0] = powB_inv[0] = 1; rep(i, n) { powB[i + 1] = get_mod(mul(powB[i], BASE)); powB_inv[i + 1] = get_mod(mul(powB_inv[i], BASE_INV)); } vector<ull> ini(n); rep(i, n) ini[i] = get_mod(mul((ull)s[i] + SHIFT, powB_inv[i])); v = Fenwick_tree<ull, opdrh, odrh, invdrh>(ini); } Dynamic_rolling_hash() : n(0) {} // s[l..r) のハッシュ値の取得 ull get(int l, int r) const { // verify : https://atcoder.jp/contests/abc331/tasks/abc331_f chmax(l, 0); chmin(r, n); if (l >= r) return 0; return get_mod(mul(v.sum(l, r), powB[r - 1])); } // s[i] = x とする. void set(int i, ull x) { // verify : https://atcoder.jp/contests/abc331/tasks/abc331_f Assert(0 <= i && i < n); v.set(i, get_mod(mul(x + SHIFT, powB_inv[i]))); } }; //【ローリングハッシュ(列)】 /* * Rolling_hash<STR>(STR s, bool reversible = false) : O(n) * 列 s[0..n) で初期化する.reversible = true にすると逆順のハッシュも計算可能になる. * 制約:STR は string,vector<T> など.ll 範囲の負数は扱えない. * * ull get(int l, int r) : O(1) * 部分文字列 s[l..r) のハッシュ値を返す(空なら 0) * * ull get_rev(int l, int r) : O(1) * 部分文字列 s[l..r) を反転した文字列のハッシュ値を返す(空なら 0) * * ull join(ull hs, ull ht, int len) : O(1) * ハッシュ値 hs をもつ s とハッシュ値 ht をもつ t[0..len) を連結した s+t のハッシュ値を返す. */ template <class STR> class Rolling_hash { // 参考 : https://qiita.com/keymoon/items/11fac5627672a6d6a9f6 //【方法】 // 2^61 - 1 は十分大きい素数であるからローリングハッシュの法として適切である. // a, b < 2^61 - 1 とし,積 a b mod (2^61 - 1) を高速に計算できればよい. // // まず a, b を上位と下位に分解し // a = 2^31 ah + al, b = 2^31 bh + bl (ah, bh < 2^30, al, bl < 2^31) // とする.これらの積をとると, // a b // = (2^31 ah + al)(2^31 bh + bl) // = 2^62 ah bh + 2^31 (ah bl + bh al) + al bl // となる.2^61 ≡ 1 (mod 2^61 - 1) に注意してそれぞれの項を mod 2^61 - 1 で整理する. // // 第 1 項については, // 2^62 ah bh // = 2 ah bh // ≦ 2 (2^30-1) (2^30-1) // となる. // // 第 2 項については,c := ah bl + bh al < 2^62 を上位と下位に分解し // c = 2^30 ch + cl (ch < 2^32, cl < 2^30) // とすると, // 2^31 c // = 2^31 (2^30 ch + cl) // = ch + 2^31 cl // ≦ (2^32-1) + 2^31 (2^30-1) // となる. // // 第 3 項については, // al bl // ≦ (2^31-1) (2^31-1) // となる. // // これらの和は // 2 ah bh + ch + 2^31 cl + al bl // ≦ 2 (2^30-1) (2^30-1) + (2^32-1) + 2^31 (2^30-1) + (2^31-1) (2^31-1) // = 9223372030412324866 < 9223372036854775808 = 2^63 << 2^64 // となるのでオーバーフローの心配はない. static constexpr ull MASK30 = (1ULL << 30) - 1; static constexpr ull MASK31 = (1ULL << 31) - 1; static constexpr ull MOD = (1ULL << 61) - 1; // 法(素数) // a mod (2^61 - 1) を返す. inline ull get_mod(ull a) const { ull ah = a >> 61, al = a & MOD; ull res = ah + al; if (res >= MOD) res -= MOD; return res; } // x ≡ a b mod (2^61 - 1) なる x < 2^63 を返す(ただし a, b < 2^61) inline ull mul(ull a, ull b) const { ull ah = a >> 31, al = a & MASK31; ull bh = b >> 31, bl = b & MASK31; ull c = ah * bl + bh * al; ull ch = c >> 30, cl = c & MASK30; ull term1 = 2 * ah * bh; ull term2 = ch + (cl << 31); ull term3 = al * bl; return term1 + term2 + term3; // < 2^63 } static constexpr ull BASE = 1234567891011; // 適当な基数 static constexpr ull SHIFT = 4295090752; // 適当なシフト // 列の長さ int n; // powB[i] : BASE^i vector<ull> powB; // v[i] : s[0..i) のハッシュ値 Σj∈[0..i) (s[j]+SHIFT) BASE^(i-1-j) // v_rev[i] : s[n-i..n) を反転した文字列のハッシュ値 vector<ull> v, v_rev; public: // 列 s[0..n) で初期化する. Rolling_hash(const STR& s, bool reversible = false) : n(sz(s)), powB(n + 1), v(n + 1) { // verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_ec powB[0] = 1; rep(i, n) powB[i + 1] = get_mod(mul(powB[i], BASE)); rep(i, n) v[i + 1] = get_mod(mul(v[i], BASE) + (ull)s[i] + SHIFT); if (reversible) { v_rev.resize(n + 1); rep(i, n) v_rev[i + 1] = get_mod(mul(v_rev[i], BASE) + (ull)s[n - 1 - i] + SHIFT); } } Rolling_hash() : n(0) {} // s[l..r) のハッシュ値の取得 ull get(int l, int r) const { // verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_ec chmax(l, 0); chmin(r, n); if (l >= r) return 0; return get_mod(v[r] + 4 * MOD - mul(v[l], powB[r - l])); } // s[l..r) を反転した文字列のハッシュ値の取得 ull get_rev(int l, int r) { // verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_ec chmax(l, 0); chmin(r, n); if (l >= r) return 0; Assert(!v_rev.empty()); // s[l, r) を反転した文字列は s_rev[n-r, n-l) に等しい. return get_mod(v_rev[n - l] + 4 * MOD - mul(v_rev[n - r], powB[r - l])); } // ハッシュ値 hs をもつ s とハッシュ値 ht をもつ t[0..len) を連結した s+t のハッシュ値を返す. ull join(ull hs, ull ht, int len) const { // verify : https://atcoder.jp/contests/abc284/tasks/abc284_f Assert(len <= n); return get_mod(ht + mul(hs, powB[len])); } }; int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); int n, l, q; cin >> n >> l >> q; vector<string> s(n); cin >> s; vector<Dynamic_rolling_hash<string>> S(n); rep(i, n) S[i] = Dynamic_rolling_hash<string>(s[i]); rep(hoge, q) { int tp; cin >> tp; if (tp == 1) { int k; char c, d; cin >> k >> c >> d; k--; rep(i, n) { if (s[i][k] == c) { s[i][k] = d; S[i].set(k, d); } } } else { string t; cin >> t; int m = sz(t); Rolling_hash T(t); int res = 0; rep(i, n) { if (S[i].get(0, m) == T.get(0, m)) { res++; } } cout << res << "\n"; } } }