結果
| 問題 |
No.2761 Substitute and Search
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-05-17 21:46:34 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,025 ms / 4,000 ms |
| コード長 | 17,321 bytes |
| コンパイル時間 | 25,222 ms |
| コンパイル使用メモリ | 358,160 KB |
| 最終ジャッジ日時 | 2025-02-21 14:40:34 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 13 |
ソースコード
// QCFium 法
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#ifndef HIDDEN_IN_VS // 折りたたみ用
// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS
// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;
// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
// 定数の定義
const double PI = acos(-1);
int DX[4] = {1, 0, -1, 0}; // 4 近傍(下,右,上,左)
int DY[4] = {0, 1, 0, -1};
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;
// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定
// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod
// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif // 折りたたみ用
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif
#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
template <size_t N> inline int lsb(const bitset<N>& b) { return b._Find_first(); }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す
#endif
//【フェニック木(アーベル群)】
/*
* Fenwick_tree<S, op, o, inv>(int n) : O(n)
* a[0..n) = o() で初期化する.要素はアーベル群 (S, op, o, inv) の元とする.
*
* Fenwick_tree<S, op, o, inv>(vS a) : O(n)
* 配列 a[0..n) で初期化する.
*
* set(int i, S x) : O(log n)
* a[i] = x とする.
*
* S get(int i) : O(log n)
* a[i] を返す.
*
* S sum(int l, int r) : O(log n)
* Σa[l..r) を返す.空なら o() を返す.
*
* add(int i, S x) : O(log n)
* a[i] += x とする.
*
* int max_right(function<bool(S)>& f) : O(log n)
* f( Σa[0..r) ) = true となる最大の r を返す.
* 制約:f( o() ) = true,f は単調
*/
template <class S, S(*op)(S, S), S(*o)(), S(*inv)(S)>
class Fenwick_tree {
// 参考:https://algo-logic.info/binary-indexed-tree/
// n : 要素数
int n;
// v[i] : Σa[*..i] の値(i:1-indexed,v[0] は不使用)
vector<S> v;
// Σa[1..r] を返す.空なら o() を返す.(r:1-indexed)
S sum_sub(int r) const {
S res = o();
// 根に向かって累積 op() をとっていく.
while (r > 0) {
res = op(res, v[r]);
// r の最下位ビットを 0 にすることで次の位置を得る.
r -= r & -r;
}
return res;
}
public:
// a[0..n) = o() で初期化する.
Fenwick_tree(int n) : n(n), v(n + 1, o()) {
// verify : https://judge.yosupo.jp/problem/range_kth_smallest
}
// 配列 a[0..n) で初期化する.
Fenwick_tree(const vector<S>& a) : n(sz(a)), v(n + 1) {
// verify : https://judge.yosupo.jp/problem/point_add_range_sum
// 配列の値を仮登録する.
rep(i, n) v[i + 1] = a[i];
// 正しい値になるよう根に向かって累積 op() をとっていく.
for (int pow2 = 1; 2 * pow2 <= n; pow2 *= 2) {
for (int i = 2 * pow2; i <= n; i += 2 * pow2) {
v[i] = op(v[i], v[i - pow2]);
}
}
}
Fenwick_tree() : n(0) {}
// a[i] = x とする.(i : 0-indexed)
void set(int i, S x) {
Assert(0 <= i && i < n);
// 差分を求める.
S d = op(x, inv(get(i)));
add(i, d);
}
// a[i] を返す.(i : 0-indexed)
S get(int i) const {
Assert(0 <= i && i < n);
return sum(i, i + 1);
}
// Σa[l..r) を返す.空なら o() を返す.(l, r : 0-indexed)
S sum(int l, int r) const {
// verify : https://judge.yosupo.jp/problem/point_add_range_sum
chmax(l, 0); chmin(r, n);
if (l >= r) return o();
// 0-indexed での半開区間 [l, r) は,
// 1-indexed での閉区間 [l + 1, r] に対応する.
// よって閉区間 [1, r] の総和から閉区間 [1, l] の総和を引けば良い.
return op(sum_sub(r), inv(sum_sub(l)));
}
// a[i] += x とする.(i : 0-indexed)
void add(int i, S x) {
// verify : https://judge.yosupo.jp/problem/point_add_range_sum
Assert(0 <= i && i < n);
// i を 1-indexed に直す.
i++;
// 根に向かって値を op() していく.
while (i <= n) {
v[i] = op(v[i], x);
// i の最下位ビットに 1 を加算することで次の位置を得る.
i += i & -i;
}
}
// f( Σa[0..r) ) = true となる最大の r を返す.(r : 0-indexed)
int max_right(const function<bool(S)>& f) const {
// verify : https://www.spoj.com/problems/ALLIN1/
S x = o();
// 注目している閉区間は [l+1, r] で幅は len
int l = 0;
for (int len = 1 << msb(n); len > 0; len >>= 1) {
int r = l + len;
auto nx = op(x, v[r]);
if (r <= n && f(nx)) {
x = nx;
l = r;
}
}
return l;
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const Fenwick_tree& ft) {
rep(i, ft.n) {
os << ft.get(i) << " ";
}
return os;
}
#endif
};
//【動的ローリングハッシュ(列)】
/*
* Rolling_hash<STR>(STR s) : O(n)
* 列 s[0..n) で初期化する.
* 制約:STR は string,vector<T> など.ll 範囲の負数は扱えない.
*
* ull get(int l, int r) : O(log n)
* 部分文字列 s[l..r) のハッシュ値を返す(空なら 0)
*
* void set(int i, ull x) : O(log n)
* s[i] = x とする.
*
* 利用:【フェニック木(アーベル群)】
*/
ull opdrh(ull x, ull y) {
ull a = x + y, ah = a >> 61, al = a & ((1ULL << 61) - 1), res = ah + al;
if (res >= ((1ULL << 61) - 1)) res -= ((1ULL << 61) - 1);
return res;
}
ull odrh() { return 0ULL; }
ull invdrh(ull a) { return ((1ULL << 61) - 1) ^ a; }
template <class STR>
class Dynamic_rolling_hash {
// 参考 : https://qiita.com/keymoon/items/11fac5627672a6d6a9f6
static constexpr ull MASK30 = (1ULL << 30) - 1;
static constexpr ull MASK31 = (1ULL << 31) - 1;
static constexpr ull MOD = (1ULL << 61) - 1; // 法(素数)
// a mod (2^61 - 1) を返す.
inline ull get_mod(ull a) const {
ull ah = a >> 61, al = a & MOD;
ull res = ah + al;
if (res >= MOD) res -= MOD;
return res;
}
// x ≡ a b mod (2^61 - 1) なる x < 2^63 を返す(ただし a, b < 2^61)
inline ull mul(ull a, ull b) const {
ull ah = a >> 31, al = a & MASK31;
ull bh = b >> 31, bl = b & MASK31;
ull c = ah * bl + bh * al;
ull ch = c >> 30, cl = c & MASK30;
ull term1 = 2 * ah * bh;
ull term2 = ch + (cl << 31);
ull term3 = al * bl;
return term1 + term2 + term3; // < 2^63
}
static constexpr ull BASE = 1234567891011; // 適当な基数
static constexpr ull BASE_INV = 212042116942762790ULL;
static constexpr ull SHIFT = 4295090752; // 適当なシフト
// 列の長さ
int n;
// powB[i] : BASE^i
vector<ull> powB, powB_inv;
// v[i] : (s[i] + SHIFT) BASE^(-i)
Fenwick_tree<ull, opdrh, odrh, invdrh> v;
public:
// 列 s[0..n) で初期化する.
Dynamic_rolling_hash(const STR& s) : n(sz(s)), powB(n + 1), powB_inv(n + 1) {
// verify : https://atcoder.jp/contests/abc331/tasks/abc331_f
powB[0] = powB_inv[0] = 1;
rep(i, n) {
powB[i + 1] = get_mod(mul(powB[i], BASE));
powB_inv[i + 1] = get_mod(mul(powB_inv[i], BASE_INV));
}
vector<ull> ini(n);
rep(i, n) ini[i] = get_mod(mul((ull)s[i] + SHIFT, powB_inv[i]));
v = Fenwick_tree<ull, opdrh, odrh, invdrh>(ini);
}
Dynamic_rolling_hash() : n(0) {}
// s[l..r) のハッシュ値の取得
ull get(int l, int r) const {
// verify : https://atcoder.jp/contests/abc331/tasks/abc331_f
chmax(l, 0); chmin(r, n);
if (l >= r) return 0;
return get_mod(mul(v.sum(l, r), powB[r - 1]));
}
// s[i] = x とする.
void set(int i, ull x) {
// verify : https://atcoder.jp/contests/abc331/tasks/abc331_f
Assert(0 <= i && i < n);
v.set(i, get_mod(mul(x + SHIFT, powB_inv[i])));
}
};
//【ローリングハッシュ(列)】
/*
* Rolling_hash<STR>(STR s, bool reversible = false) : O(n)
* 列 s[0..n) で初期化する.reversible = true にすると逆順のハッシュも計算可能になる.
* 制約:STR は string,vector<T> など.ll 範囲の負数は扱えない.
*
* ull get(int l, int r) : O(1)
* 部分文字列 s[l..r) のハッシュ値を返す(空なら 0)
*
* ull get_rev(int l, int r) : O(1)
* 部分文字列 s[l..r) を反転した文字列のハッシュ値を返す(空なら 0)
*
* ull join(ull hs, ull ht, int len) : O(1)
* ハッシュ値 hs をもつ s とハッシュ値 ht をもつ t[0..len) を連結した s+t のハッシュ値を返す.
*/
template <class STR>
class Rolling_hash {
// 参考 : https://qiita.com/keymoon/items/11fac5627672a6d6a9f6
//【方法】
// 2^61 - 1 は十分大きい素数であるからローリングハッシュの法として適切である.
// a, b < 2^61 - 1 とし,積 a b mod (2^61 - 1) を高速に計算できればよい.
//
// まず a, b を上位と下位に分解し
// a = 2^31 ah + al, b = 2^31 bh + bl (ah, bh < 2^30, al, bl < 2^31)
// とする.これらの積をとると,
// a b
// = (2^31 ah + al)(2^31 bh + bl)
// = 2^62 ah bh + 2^31 (ah bl + bh al) + al bl
// となる.2^61 ≡ 1 (mod 2^61 - 1) に注意してそれぞれの項を mod 2^61 - 1 で整理する.
//
// 第 1 項については,
// 2^62 ah bh
// = 2 ah bh
// ≦ 2 (2^30-1) (2^30-1)
// となる.
//
// 第 2 項については,c := ah bl + bh al < 2^62 を上位と下位に分解し
// c = 2^30 ch + cl (ch < 2^32, cl < 2^30)
// とすると,
// 2^31 c
// = 2^31 (2^30 ch + cl)
// = ch + 2^31 cl
// ≦ (2^32-1) + 2^31 (2^30-1)
// となる.
//
// 第 3 項については,
// al bl
// ≦ (2^31-1) (2^31-1)
// となる.
//
// これらの和は
// 2 ah bh + ch + 2^31 cl + al bl
// ≦ 2 (2^30-1) (2^30-1) + (2^32-1) + 2^31 (2^30-1) + (2^31-1) (2^31-1)
// = 9223372030412324866 < 9223372036854775808 = 2^63 << 2^64
// となるのでオーバーフローの心配はない.
static constexpr ull MASK30 = (1ULL << 30) - 1;
static constexpr ull MASK31 = (1ULL << 31) - 1;
static constexpr ull MOD = (1ULL << 61) - 1; // 法(素数)
// a mod (2^61 - 1) を返す.
inline ull get_mod(ull a) const {
ull ah = a >> 61, al = a & MOD;
ull res = ah + al;
if (res >= MOD) res -= MOD;
return res;
}
// x ≡ a b mod (2^61 - 1) なる x < 2^63 を返す(ただし a, b < 2^61)
inline ull mul(ull a, ull b) const {
ull ah = a >> 31, al = a & MASK31;
ull bh = b >> 31, bl = b & MASK31;
ull c = ah * bl + bh * al;
ull ch = c >> 30, cl = c & MASK30;
ull term1 = 2 * ah * bh;
ull term2 = ch + (cl << 31);
ull term3 = al * bl;
return term1 + term2 + term3; // < 2^63
}
static constexpr ull BASE = 1234567891011; // 適当な基数
static constexpr ull SHIFT = 4295090752; // 適当なシフト
// 列の長さ
int n;
// powB[i] : BASE^i
vector<ull> powB;
// v[i] : s[0..i) のハッシュ値 Σj∈[0..i) (s[j]+SHIFT) BASE^(i-1-j)
// v_rev[i] : s[n-i..n) を反転した文字列のハッシュ値
vector<ull> v, v_rev;
public:
// 列 s[0..n) で初期化する.
Rolling_hash(const STR& s, bool reversible = false) : n(sz(s)), powB(n + 1), v(n + 1) {
// verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_ec
powB[0] = 1;
rep(i, n) powB[i + 1] = get_mod(mul(powB[i], BASE));
rep(i, n) v[i + 1] = get_mod(mul(v[i], BASE) + (ull)s[i] + SHIFT);
if (reversible) {
v_rev.resize(n + 1);
rep(i, n) v_rev[i + 1] = get_mod(mul(v_rev[i], BASE) + (ull)s[n - 1 - i] + SHIFT);
}
}
Rolling_hash() : n(0) {}
// s[l..r) のハッシュ値の取得
ull get(int l, int r) const {
// verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_ec
chmax(l, 0); chmin(r, n);
if (l >= r) return 0;
return get_mod(v[r] + 4 * MOD - mul(v[l], powB[r - l]));
}
// s[l..r) を反転した文字列のハッシュ値の取得
ull get_rev(int l, int r) {
// verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_ec
chmax(l, 0); chmin(r, n);
if (l >= r) return 0;
Assert(!v_rev.empty());
// s[l, r) を反転した文字列は s_rev[n-r, n-l) に等しい.
return get_mod(v_rev[n - l] + 4 * MOD - mul(v_rev[n - r], powB[r - l]));
}
// ハッシュ値 hs をもつ s とハッシュ値 ht をもつ t[0..len) を連結した s+t のハッシュ値を返す.
ull join(ull hs, ull ht, int len) const {
// verify : https://atcoder.jp/contests/abc284/tasks/abc284_f
Assert(len <= n);
return get_mod(ht + mul(hs, powB[len]));
}
};
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int n, l, q;
cin >> n >> l >> q;
vector<string> s(n);
cin >> s;
vector<Dynamic_rolling_hash<string>> S(n);
rep(i, n) S[i] = Dynamic_rolling_hash<string>(s[i]);
rep(hoge, q) {
int tp;
cin >> tp;
if (tp == 1) {
int k; char c, d;
cin >> k >> c >> d;
k--;
rep(i, n) {
if (s[i][k] == c) {
s[i][k] = d;
S[i].set(k, d);
}
}
}
else {
string t;
cin >> t;
int m = sz(t);
Rolling_hash T(t);
int res = 0;
rep(i, n) {
if (S[i].get(0, m) == T.get(0, m)) {
res++;
}
}
cout << res << "\n";
}
}
}