結果

問題 No.2761 Substitute and Search
ユーザー ecotteaecottea
提出日時 2024-05-17 21:46:34
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 832 ms / 4,000 ms
コード長 17,321 bytes
コンパイル時間 6,960 ms
コンパイル使用メモリ 312,768 KB
実行使用メモリ 77,440 KB
最終ジャッジ日時 2024-05-17 21:46:49
合計ジャッジ時間 12,912 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 553 ms
77,056 KB
testcase_05 AC 832 ms
77,056 KB
testcase_06 AC 144 ms
77,184 KB
testcase_07 AC 653 ms
77,440 KB
testcase_08 AC 148 ms
77,056 KB
testcase_09 AC 643 ms
77,440 KB
testcase_10 AC 147 ms
77,056 KB
testcase_11 AC 648 ms
77,312 KB
testcase_12 AC 456 ms
77,312 KB
testcase_13 AC 401 ms
77,440 KB
testcase_14 AC 434 ms
77,312 KB
testcase_15 AC 432 ms
77,312 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// QCFium 法
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")


#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
int DX[4] = {1, 0, -1, 0}; // 4 近傍(下,右,上,左)
int DY[4] = {0, 1, 0, -1};
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
template <size_t N> inline int lsb(const bitset<N>& b) { return b._Find_first(); }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す
#endif


//【フェニック木(アーベル群)】
/*
* Fenwick_tree<S, op, o, inv>(int n) : O(n)
*	a[0..n) = o() で初期化する.要素はアーベル群 (S, op, o, inv) の元とする.
*
* Fenwick_tree<S, op, o, inv>(vS a) : O(n)
*	配列 a[0..n) で初期化する.
*
* set(int i, S x) : O(log n)
*	a[i] = x とする.
*
* S get(int i) : O(log n)
*	a[i] を返す.
*
* S sum(int l, int r) : O(log n)
*	Σa[l..r) を返す.空なら o() を返す.
*
* add(int i, S x) : O(log n)
*	a[i] += x とする.
*
* int max_right(function<bool(S)>& f) : O(log n)
*	f( Σa[0..r) ) = true となる最大の r を返す.
*   制約:f( o() ) = true,f は単調
*/
template <class S, S(*op)(S, S), S(*o)(), S(*inv)(S)>
class Fenwick_tree {
	// 参考:https://algo-logic.info/binary-indexed-tree/

	// n : 要素数
	int n;

	// v[i] : Σa[*..i] の値(i:1-indexed,v[0] は不使用)
	vector<S> v;

	// Σa[1..r] を返す.空なら o() を返す.(r:1-indexed)
	S sum_sub(int r) const {
		S res = o();

		// 根に向かって累積 op() をとっていく.
		while (r > 0) {
			res = op(res, v[r]);

			// r の最下位ビットを 0 にすることで次の位置を得る.
			r -= r & -r;
		}
		return res;
	}

public:
	// a[0..n) = o() で初期化する.
	Fenwick_tree(int n) : n(n), v(n + 1, o()) {
		// verify : https://judge.yosupo.jp/problem/range_kth_smallest
	}

	// 配列 a[0..n) で初期化する.
	Fenwick_tree(const vector<S>& a) : n(sz(a)), v(n + 1) {
		// verify : https://judge.yosupo.jp/problem/point_add_range_sum

		// 配列の値を仮登録する.
		rep(i, n) v[i + 1] = a[i];

		// 正しい値になるよう根に向かって累積 op() をとっていく.
		for (int pow2 = 1; 2 * pow2 <= n; pow2 *= 2) {
			for (int i = 2 * pow2; i <= n; i += 2 * pow2) {
				v[i] = op(v[i], v[i - pow2]);
			}
		}
	}
	Fenwick_tree() : n(0) {}

	// a[i] = x とする.(i : 0-indexed)
	void set(int i, S x) {
		Assert(0 <= i && i < n);

		// 差分を求める.
		S d = op(x, inv(get(i)));

		add(i, d);
	}

	// a[i] を返す.(i : 0-indexed)
	S get(int i) const {
		Assert(0 <= i && i < n);

		return sum(i, i + 1);
	}

	// Σa[l..r) を返す.空なら o() を返す.(l, r : 0-indexed)
	S sum(int l, int r) const {
		// verify : https://judge.yosupo.jp/problem/point_add_range_sum

		chmax(l, 0); chmin(r, n);
		if (l >= r) return o();

		// 0-indexed での半開区間 [l, r) は,
		// 1-indexed での閉区間 [l + 1, r] に対応する.
		// よって閉区間 [1, r] の総和から閉区間 [1, l] の総和を引けば良い.
		return op(sum_sub(r), inv(sum_sub(l)));
	}

	// a[i] += x とする.(i : 0-indexed)
	void add(int i, S x) {
		// verify : https://judge.yosupo.jp/problem/point_add_range_sum

		Assert(0 <= i && i < n);

		// i を 1-indexed に直す.
		i++;

		// 根に向かって値を op() していく.
		while (i <= n) {
			v[i] = op(v[i], x);

			// i の最下位ビットに 1 を加算することで次の位置を得る.
			i += i & -i;
		}
	}

	// f( Σa[0..r) ) = true となる最大の r を返す.(r : 0-indexed)
	int max_right(const function<bool(S)>& f) const {
		// verify : https://www.spoj.com/problems/ALLIN1/

		S x = o();

		// 注目している閉区間は [l+1, r] で幅は len
		int l = 0;
		for (int len = 1 << msb(n); len > 0; len >>= 1) {
			int r = l + len;

			auto nx = op(x, v[r]);
			if (r <= n && f(nx)) {
				x = nx;
				l = r;
			}
		}
		return l;
	}

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const Fenwick_tree& ft) {
		rep(i, ft.n) {
			os << ft.get(i) << " ";
		}
		return os;
	}
#endif
};


//【動的ローリングハッシュ(列)】
/*
* Rolling_hash<STR>(STR s) : O(n)
*	列 s[0..n) で初期化する.
*	制約:STR は string,vector<T> など.ll 範囲の負数は扱えない.
*
* ull get(int l, int r) : O(log n)
*	部分文字列 s[l..r) のハッシュ値を返す(空なら 0)
*
* void set(int i, ull x) : O(log n)
*	s[i] = x とする.
*
* 利用:【フェニック木(アーベル群)】
*/
ull opdrh(ull x, ull y) {
	ull a = x + y, ah = a >> 61, al = a & ((1ULL << 61) - 1), res = ah + al;
	if (res >= ((1ULL << 61) - 1)) res -= ((1ULL << 61) - 1);
	return res;
}
ull odrh() { return 0ULL; }
ull invdrh(ull a) { return ((1ULL << 61) - 1) ^ a; }
template <class STR>
class Dynamic_rolling_hash {
	// 参考 : https://qiita.com/keymoon/items/11fac5627672a6d6a9f6

	static constexpr ull MASK30 = (1ULL << 30) - 1;
	static constexpr ull MASK31 = (1ULL << 31) - 1;
	static constexpr ull MOD = (1ULL << 61) - 1; // 法(素数)

	// a mod (2^61 - 1) を返す.
	inline ull get_mod(ull a) const {
		ull ah = a >> 61, al = a & MOD;
		ull res = ah + al;
		if (res >= MOD) res -= MOD;
		return res;
	}

	// x ≡ a b mod (2^61 - 1) なる x < 2^63 を返す(ただし a, b < 2^61)
	inline ull mul(ull a, ull b) const {
		ull ah = a >> 31, al = a & MASK31;
		ull bh = b >> 31, bl = b & MASK31;

		ull c = ah * bl + bh * al;
		ull ch = c >> 30, cl = c & MASK30;

		ull term1 = 2 * ah * bh;
		ull term2 = ch + (cl << 31);
		ull term3 = al * bl;

		return term1 + term2 + term3; // < 2^63
	}

	static constexpr ull BASE = 1234567891011; // 適当な基数
	static constexpr ull BASE_INV = 212042116942762790ULL;
	static constexpr ull SHIFT = 4295090752; // 適当なシフト

	// 列の長さ
	int n;

	// powB[i] : BASE^i
	vector<ull> powB, powB_inv;

	// v[i] : (s[i] + SHIFT) BASE^(-i)
	Fenwick_tree<ull, opdrh, odrh, invdrh> v;

public:
	// 列 s[0..n) で初期化する.
	Dynamic_rolling_hash(const STR& s) : n(sz(s)), powB(n + 1), powB_inv(n + 1) {
		// verify : https://atcoder.jp/contests/abc331/tasks/abc331_f

		powB[0] = powB_inv[0] = 1;
		rep(i, n) {
			powB[i + 1] = get_mod(mul(powB[i], BASE));
			powB_inv[i + 1] = get_mod(mul(powB_inv[i], BASE_INV));
		}

		vector<ull> ini(n);
		rep(i, n) ini[i] = get_mod(mul((ull)s[i] + SHIFT, powB_inv[i]));
		v = Fenwick_tree<ull, opdrh, odrh, invdrh>(ini);
	}
	Dynamic_rolling_hash() : n(0) {}

	// s[l..r) のハッシュ値の取得
	ull get(int l, int r) const {
		// verify : https://atcoder.jp/contests/abc331/tasks/abc331_f

		chmax(l, 0); chmin(r, n);
		if (l >= r) return 0;

		return get_mod(mul(v.sum(l, r), powB[r - 1]));
	}

	// s[i] = x とする.
	void set(int i, ull x) {
		// verify : https://atcoder.jp/contests/abc331/tasks/abc331_f

		Assert(0 <= i && i < n);

		v.set(i, get_mod(mul(x + SHIFT, powB_inv[i])));
	}
};


//【ローリングハッシュ(列)】
/*
* Rolling_hash<STR>(STR s, bool reversible = false) : O(n)
*	列 s[0..n) で初期化する.reversible = true にすると逆順のハッシュも計算可能になる.
*	制約:STR は string,vector<T> など.ll 範囲の負数は扱えない.
*
* ull get(int l, int r) : O(1)
*	部分文字列 s[l..r) のハッシュ値を返す(空なら 0)
*
* ull get_rev(int l, int r) : O(1)
*	部分文字列 s[l..r) を反転した文字列のハッシュ値を返す(空なら 0)
*
* ull join(ull hs, ull ht, int len) : O(1)
*	ハッシュ値 hs をもつ s とハッシュ値 ht をもつ t[0..len) を連結した s+t のハッシュ値を返す.
*/
template <class STR>
class Rolling_hash {
	// 参考 : https://qiita.com/keymoon/items/11fac5627672a6d6a9f6

	//【方法】
	// 2^61 - 1 は十分大きい素数であるからローリングハッシュの法として適切である.
	// a, b < 2^61 - 1 とし,積 a b mod (2^61 - 1) を高速に計算できればよい.
	// 
	// まず a, b を上位と下位に分解し
	//		a = 2^31 ah + al, b = 2^31 bh + bl  (ah, bh < 2^30, al, bl < 2^31)
	// とする.これらの積をとると,
	//		a b
	//		= (2^31 ah + al)(2^31 bh + bl)
	//		= 2^62 ah bh + 2^31 (ah bl + bh al) + al bl
	// となる.2^61 ≡ 1 (mod 2^61 - 1) に注意してそれぞれの項を mod 2^61 - 1 で整理する.
	//
	// 第 1 項については,
	//		2^62 ah bh
	//		= 2 ah bh
	//		≦ 2 (2^30-1) (2^30-1)
	// となる.
	//
	// 第 2 項については,c := ah bl + bh al < 2^62 を上位と下位に分解し
	//		c = 2^30 ch + cl  (ch < 2^32, cl < 2^30)
	// とすると,
	//		2^31 c
	//		= 2^31 (2^30 ch + cl)
	//		= ch + 2^31 cl
	//		≦ (2^32-1) + 2^31 (2^30-1)
	// となる.
	//
	// 第 3 項については,
	//		al bl
	//		≦ (2^31-1) (2^31-1)
	// となる.
	// 
	// これらの和は
	//		2 ah bh + ch + 2^31 cl + al bl
	//		≦ 2 (2^30-1) (2^30-1) + (2^32-1) + 2^31 (2^30-1) + (2^31-1) (2^31-1)
	//		= 9223372030412324866 < 9223372036854775808 = 2^63 << 2^64
	// となるのでオーバーフローの心配はない.

	static constexpr ull MASK30 = (1ULL << 30) - 1;
	static constexpr ull MASK31 = (1ULL << 31) - 1;
	static constexpr ull MOD = (1ULL << 61) - 1; // 法(素数)

	// a mod (2^61 - 1) を返す.
	inline ull get_mod(ull a) const {
		ull ah = a >> 61, al = a & MOD;
		ull res = ah + al;
		if (res >= MOD) res -= MOD;
		return res;
	}

	// x ≡ a b mod (2^61 - 1) なる x < 2^63 を返す(ただし a, b < 2^61)
	inline ull mul(ull a, ull b) const {
		ull ah = a >> 31, al = a & MASK31;
		ull bh = b >> 31, bl = b & MASK31;

		ull c = ah * bl + bh * al;
		ull ch = c >> 30, cl = c & MASK30;

		ull term1 = 2 * ah * bh;
		ull term2 = ch + (cl << 31);
		ull term3 = al * bl;

		return term1 + term2 + term3; // < 2^63
	}

	static constexpr ull BASE = 1234567891011; // 適当な基数
	static constexpr ull SHIFT = 4295090752; // 適当なシフト

	// 列の長さ
	int n;

	// powB[i] : BASE^i
	vector<ull> powB;

	// v[i] : s[0..i) のハッシュ値 Σj∈[0..i) (s[j]+SHIFT) BASE^(i-1-j)
	// v_rev[i] : s[n-i..n) を反転した文字列のハッシュ値
	vector<ull> v, v_rev;

public:
	// 列 s[0..n) で初期化する.
	Rolling_hash(const STR& s, bool reversible = false) : n(sz(s)), powB(n + 1), v(n + 1) {
		// verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_ec

		powB[0] = 1;
		rep(i, n) powB[i + 1] = get_mod(mul(powB[i], BASE));

		rep(i, n) v[i + 1] = get_mod(mul(v[i], BASE) + (ull)s[i] + SHIFT);

		if (reversible) {
			v_rev.resize(n + 1);
			rep(i, n) v_rev[i + 1] = get_mod(mul(v_rev[i], BASE) + (ull)s[n - 1 - i] + SHIFT);
		}
	}
	Rolling_hash() : n(0) {}

	// s[l..r) のハッシュ値の取得
	ull get(int l, int r) const {
		// verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_ec

		chmax(l, 0); chmin(r, n);
		if (l >= r) return 0;

		return get_mod(v[r] + 4 * MOD - mul(v[l], powB[r - l]));
	}

	// s[l..r) を反転した文字列のハッシュ値の取得
	ull get_rev(int l, int r) {
		// verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_ec

		chmax(l, 0); chmin(r, n);
		if (l >= r) return 0;
		Assert(!v_rev.empty());

		// s[l, r) を反転した文字列は s_rev[n-r, n-l) に等しい.
		return get_mod(v_rev[n - l] + 4 * MOD - mul(v_rev[n - r], powB[r - l]));
	}

	// ハッシュ値 hs をもつ s とハッシュ値 ht をもつ t[0..len) を連結した s+t のハッシュ値を返す.
	ull join(ull hs, ull ht, int len) const {
		// verify : https://atcoder.jp/contests/abc284/tasks/abc284_f

		Assert(len <= n);
		return get_mod(ht + mul(hs, powB[len]));
	}
};


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

	int n, l, q; 
	cin >> n >> l >> q;

	vector<string> s(n);
	cin >> s;

	vector<Dynamic_rolling_hash<string>> S(n);
	rep(i, n) S[i] = Dynamic_rolling_hash<string>(s[i]);

	rep(hoge, q) {
		int tp;
		cin >> tp;

		if (tp == 1) {
			int k; char c, d;
			cin >> k >> c >> d;
			k--;

			rep(i, n) {
				if (s[i][k] == c) {
					s[i][k] = d;
					S[i].set(k, d);
				}
			}
		}
		else {
			string t;
			cin >> t;

			int m = sz(t);

			Rolling_hash T(t);

			int res = 0;

			rep(i, n) {
				if (S[i].get(0, m) == T.get(0, m)) {
					res++;
				}
			}

			cout << res << "\n";
		}
	}
}
0