結果
問題 | No.2758 RDQ |
ユーザー | deuteridayo |
提出日時 | 2024-05-17 22:03:24 |
言語 | C++17(clang) (17.0.6 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 258 ms / 2,000 ms |
コード長 | 5,901 bytes |
コンパイル時間 | 5,359 ms |
コンパイル使用メモリ | 185,476 KB |
実行使用メモリ | 15,196 KB |
最終ジャッジ日時 | 2024-05-17 23:45:06 |
合計ジャッジ時間 | 10,130 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 152 ms
13,972 KB |
testcase_01 | AC | 1 ms
6,944 KB |
testcase_02 | AC | 1 ms
6,944 KB |
testcase_03 | AC | 1 ms
6,940 KB |
testcase_04 | AC | 1 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 183 ms
11,184 KB |
testcase_07 | AC | 182 ms
10,964 KB |
testcase_08 | AC | 183 ms
11,016 KB |
testcase_09 | AC | 179 ms
11,092 KB |
testcase_10 | AC | 185 ms
11,112 KB |
testcase_11 | AC | 255 ms
14,804 KB |
testcase_12 | AC | 258 ms
14,928 KB |
testcase_13 | AC | 257 ms
15,196 KB |
testcase_14 | AC | 257 ms
14,804 KB |
testcase_15 | AC | 254 ms
15,064 KB |
testcase_16 | AC | 256 ms
14,680 KB |
testcase_17 | AC | 248 ms
14,800 KB |
testcase_18 | AC | 248 ms
14,932 KB |
testcase_19 | AC | 242 ms
14,676 KB |
testcase_20 | AC | 251 ms
14,928 KB |
testcase_21 | AC | 2 ms
6,944 KB |
testcase_22 | AC | 2 ms
6,940 KB |
testcase_23 | AC | 2 ms
6,940 KB |
ソースコード
#include<bits/stdc++.h> #include<atcoder/all> using namespace std; using namespace atcoder; using lint = long long; using ulint = unsigned long long; using llint = __int128_t; struct edge; using graph = vector<vector<edge>>; #define endl '\n' constexpr int INF = 1<<30; constexpr lint INF64 = 1LL<<61; constexpr lint mod107 = 1e9+7; using mint107 = modint1000000007; constexpr long mod = 998244353; using mint = modint998244353; lint ceilDiv(lint x, lint y){if(x >= 0){return (x+y-1)/y;}else{return x/y;}} lint floorDiv(lint x, lint y){if(x >= 0){return x/y;}else{return (x-y+1)/y;}} lint Sqrt(lint x) {assert(x >= 0); lint ans = sqrt(x); while(ans*ans > x)ans--; while((ans+1)*(ans+1)<=x)ans++; return ans;} lint gcd(lint a,lint b){if(a<b)swap(a,b);if(a%b==0)return b;else return gcd(b,a%b);} lint lcm(lint a,lint b){return (a / gcd(a,b)) * b;} double Dist(double x1, double y1, double x2, double y2){return sqrt(pow(x1-x2, 2) + pow(y1-y2,2));} lint DistSqr(lint x1, lint y1, lint x2, lint y2){return (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2); } string toString(lint n){string ans = "";if(n == 0){ans += "0";}else{while(n > 0){int a = n%10;char b = '0' + a;string c = "";c += b;n /= 10;ans = c + ans;}}return ans;} string toString(lint n, lint k){string ans = toString(n);string tmp = "";while(ans.length() + tmp.length() < k){tmp += "0";}return tmp + ans;} vector<lint>prime;void makePrime(lint n){prime.push_back(2);for(lint i=3;i<=n;i+=2){bool chk = true;for(lint j=0;j<prime.size() && prime[j]*prime[j] <= i;j++){if(i % prime[j]==0){chk=false;break;}}if(chk)prime.push_back(i);}} lint Kai[20000001]; bool firstCallnCr = true; lint ncrmodp(lint n,lint r,lint p){ if(firstCallnCr){ Kai[0] = 1; for(int i=1;i<=20000000;i++){ Kai[i] = Kai[i-1] * i; Kai[i] %= p;} firstCallnCr = false;} if(n<0)return 0; if(n < r)return 0;if(n==0)return 1;lint ans = Kai[n];lint tmp = (Kai[r] * Kai[n-r]) % p;for(lint i=1;i<=p-2;i*=2){if(i & p-2){ans *= tmp;ans %= p;}tmp *= tmp;tmp %= p;}return ans;} #define rep(i, n) for(int i = 0; i < n; i++) #define repp(i, x, y) for(int i = x; i < y; i++) #define vec vector #define pb push_back #define se second #define fi first #define al(x) x.begin(),x.end() #define ral(x) x.rbegin(),x.rend() unsigned long Rand() { static unsigned long x=123456789, y=362436069, z=521288629, w=88675123; unsigned long t=(x^(x<<11)); x=y; y=z; z=w; return ( w=(w^(w>>19))^(t^(t>>8)) ); } struct Point { lint x, y; int quad; Point(lint X, lint Y) { x = X; y = Y; quad = getQuad(); } int getQuad() { if(x >= 0) { if(y >= 0) return 1; else return 4; } else { if(y >= 0) return 2; else return 3; } } }; bool operator<(const Point &left, const Point &right) { if(left.quad == right.quad) { return left.y * right.x < left.x * right.y; } else { return left.quad < right.quad; } } struct Frac { lint upper, lower; Frac() { Frac(0,1); } Frac(lint u, lint l) { assert(l != 0); if(u <= 0 && l < 0) { upper = -u; lower = -l; } else { upper = u; lower = l; } reduction(); } Frac(lint u) { upper = u; lower = 1; } void reduction() { if(upper != 0) { lint g = gcd(abs(upper), abs(lower)); upper /= g; lower /= g; if(lower < 0) {lower *= -1; upper *= -1; } } else { lower = 1; } } Frac operator+(const Frac &other) { lint L = lower * other.lower; lint U = upper*other.lower + lower*other.upper; return Frac(U, L); } Frac operator-(const Frac &other) { lint L = lower * other.lower; lint U = upper*other.lower - lower*other.upper; upper = U; lower = L; return Frac(U, L); } bool operator<=(const Frac &other) { return upper*other.lower <= lower*other.upper; } Frac operator*(const Frac &other) { lint L = lower * other.lower; lint U = upper * other.upper; return Frac(U, L); } Frac operator/(const Frac &other) { assert(other.upper != 0); lint L = lower * other.upper; lint U = upper * other.lower; return Frac(U, L); } }; bool operator<(const Frac &left, const Frac &right) { return left.upper*right.lower < left.lower*right.upper; } lint extGCD(lint a, lint b, lint &x, lint &y) { if (b == 0) { x = 1; y = 0; return a; } lint d = extGCD(b, a%b, y, x); y -= a/b * x; return d; } struct edge{ lint to; lint cost; }; vector<lint>dijkstra(int s, graph &g) { vec<lint>ret(g.size(), INF64); priority_queue<pair<lint, lint>>que; que.push({-0, s}); ret[s] = 0; while(!que.empty()) { auto q = que.top(); que.pop(); for(auto&& e: g[q.second]) { if(ret[e.to] > -q.first + e.cost) { ret[e.to] = -q.first + e.cost; que.push({-ret[e.to], e.to}); } } } return ret; } int main(){ lint n,q; cin >> n >> q; lint a[n]; rep(i, n) { cin >> a[i]; } vec<vec<lint>>P; rep(qq, q) { lint l,r,k; cin >> l >> r >> k; P.pb({l- 1, k, 0, qq}); P.pb({r, k, 1, qq}); } sort(al(P)); vec<lint>ans(q); int t = 0; map<lint, lint>mp; rep(i, n+1) { while(t < P.size() && P[t][0] == i) { if(P[t][2] == 0) { ans[P[t][3]] -= mp[P[t][1]]; } else { ans[P[t][3]] += mp[P[t][1]]; } t++; } if(i == n) break; for(int j = 1; j*j <= a[i]; j++) { if(a[i] % j == 0) { mp[j]++; if(j*j != a[i]) mp[a[i] / j]++; } } } rep(i, q) cout << ans[i] << endl; }