結果

問題 No.2761 Substitute and Search
ユーザー hato336hato336
提出日時 2024-05-17 22:14:48
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 10,084 bytes
コンパイル時間 204 ms
コンパイル使用メモリ 82,148 KB
実行使用メモリ 481,028 KB
最終ジャッジ日時 2024-05-17 22:14:56
合計ジャッジ時間 7,371 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 127 ms
96,416 KB
testcase_01 AC 127 ms
89,420 KB
testcase_02 AC 124 ms
89,400 KB
testcase_03 AC 151 ms
89,580 KB
testcase_04 TLE -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

import collections,sys,math,functools,operator,itertools,bisect,heapq,decimal,string,time,random
#sys.setrecursionlimit(10**9)
#https://github.com/shakayami/ACL-for-python/blob/master/lazysegtree.py
class lazy_segtree():
    def update(self,k):self.d[k]=self.op(self.d[2*k],self.d[2*k+1])
    def all_apply(self,k,f):
        self.d[k]=self.mapping(f,self.d[k])
        if (k<self.size):self.lz[k]=self.composition(f,self.lz[k])
    def push(self,k):
        self.all_apply(2*k,self.lz[k])
        self.all_apply(2*k+1,self.lz[k])
        self.lz[k]=self.identity
    def __init__(self,V,OP,E,MAPPING,COMPOSITION,ID):
        self.n=len(V)
        self.log=(self.n-1).bit_length()
        self.size=1<<self.log
        self.d=[E for i in range(2*self.size)]
        self.lz=[ID for i in range(self.size)]
        self.e=E
        self.op=OP
        self.mapping=MAPPING
        self.composition=COMPOSITION
        self.identity=ID
        for i in range(self.n):self.d[self.size+i]=V[i]
        for i in range(self.size-1,0,-1):self.update(i)
    def set(self,p,x):
        assert 0<=p and p<self.n
        p+=self.size
        for i in range(self.log,0,-1):self.push(p>>i)
        self.d[p]=x
        for i in range(1,self.log+1):self.update(p>>i)
    def get(self,p):
        assert 0<=p and p<self.n
        p+=self.size
        for i in range(self.log,0,-1):self.push(p>>i)
        return self.d[p]
    def prod(self,l,r):
        assert 0<=l and l<=r and r<=self.n
        if l==r:return self.e
        l+=self.size
        r+=self.size
        for i in range(self.log,0,-1):
            if (((l>>i)<<i)!=l):self.push(l>>i)
            if (((r>>i)<<i)!=r):self.push(r>>i)
        sml,smr=self.e,self.e
        while(l<r):
            if l&1:
                sml=self.op(sml,self.d[l])
                l+=1
            if r&1:
                r-=1
                smr=self.op(self.d[r],smr)
            l>>=1
            r>>=1
        return self.op(sml,smr)
    def all_prod(self):return self.d[1]
    def apply_point(self,p,f):
        assert 0<=p and p<self.n
        p+=self.size
        for i in range(self.log,0,-1):self.push(p>>i)
        self.d[p]=self.mapping(f,self.d[p])
        for i in range(1,self.log+1):self.update(p>>i)
    def apply(self,l,r,f):
        assert 0<=l and l<=r and r<=self.n
        if l==r:return
        l+=self.size
        r+=self.size
        for i in range(self.log,0,-1):
            if (((l>>i)<<i)!=l):self.push(l>>i)
            if (((r>>i)<<i)!=r):self.push((r-1)>>i)
        l2,r2=l,r
        while(l<r):
            if (l&1):
                self.all_apply(l,f)
                l+=1
            if (r&1):
                r-=1
                self.all_apply(r,f)
            l>>=1
            r>>=1
        l,r=l2,r2
        for i in range(1,self.log+1):
            if (((l>>i)<<i)!=l):self.update(l>>i)
            if (((r>>i)<<i)!=r):self.update((r-1)>>i)
    def max_right(self,l,g):
        assert 0<=l and l<=self.n
        assert g(self.e)
        if l==self.n:return self.n
        l+=self.size
        for i in range(self.log,0,-1):self.push(l>>i)
        sm=self.e
        while(1):
            while(l%2==0):l>>=1
            if not(g(self.op(sm,self.d[l]))):
                while(l<self.size):
                    self.push(l)
                    l=(2*l)
                    if (g(self.op(sm,self.d[l]))):
                        sm=self.op(sm,self.d[l])
                        l+=1
                return l-self.size
            sm=self.op(sm,self.d[l])
            l+=1
            if (l&-l)==l:break
        return self.n
    def min_left(self,r,g):
        assert (0<=r and r<=self.n)
        assert g(self.e)
        if r==0:return 0
        r+=self.size
        for i in range(self.log,0,-1):self.push((r-1)>>i)
        sm=self.e
        while(1):
            r-=1
            while(r>1 and (r%2)):r>>=1
            if not(g(self.op(self.d[r],sm))):
                while(r<self.size):
                    self.push(r)
                    r=(2*r+1)
                    if g(self.op(self.d[r],sm)):
                        sm=self.op(self.d[r],sm)
                        r-=1
                return r+1-self.size
            sm=self.op(self.d[r],sm)
            if (r&-r)==r:break
        return 0
mod = 998244353
#区間加算・区間最小値取得 lst = lazy_segtree([],min,10**18,operator.add,operator.add,0)
#区間加算・区間最大値取得 lst = lazy_segtree([],max,-10**18,operator.add,operator.add,0)
#区間加算・区間和取得 lst = lazy_segtree([(alist[i],1) for i in range(n)],lambda x,y:((x[0]+y[0])%mod,x[1]+y[1]),(0,0),lambda x,y:((y[0]+x*y[1])%mod,y[1]),operator.add,0)
#区間変更・区間最小値取得 lst = lazy_segtree([],min,10**18,lambda x,y:y if x == 10**18 else x,lambda x,y:y if x == 10**18 else x,10**18)
#区間変更・区間最大値取得 lst = lazy_segtree([],max,-10**18,lambda x,y:y if x == -10**18 else x,lambda x,y:y if x == -10**18 else x,-10**18)
#区間変更・区間和取得 lst = lazy_segtree([(alist[i],1) for i in range(n)],lambda x,y:((x[0]+y[0])%mod,x[1]+y[1]),(0,0),lambda x,y:(y[1]*x,y[1]) if x != 10**18 else y,lambda x,y:y if x == 10**18 else x,10**18)

def op(x,y):
    return
#xはlazy, yはd
def mapping(x,y):
    return
#yが作用してからxが作用する
def composition(x,y):
    return
def segfunc(x,y):
    return x+y
#self.lazyは1~indexed
#self.add(l,r,x)は0~indexdの開区間[l,r)
#self.get(i)は0~indexd
mod = 2**61-1
class cheapSegTree:
    def __init__(self,n):
        self.segfunc=lambda x,y:(x+y)%mod
        self.num = 1<<(n-1).bit_length()
        self.lazy = [0]*2*self.num
    
    def update(self,l,r,x):
        #下のコードで self.lazy[index]が[l,r)に含まれるindexを網羅できるらしい
        #ノーマルセグ木の区間取得とかでもつかえてすごいけど原理は分からない
        l+=self.num
        r+=self.num
        while l<r:
            if l&1:
                self.lazy[l]=self.segfunc(self.lazy[l],x)
                l+=1
            if r&1:
                self.lazy[r-1]=self.segfunc(self.lazy[r-1],x)
            l>>=1
            r>>=1

    def get(self,i):
        res=0
        i+=self.num
        while i:
            res=self.segfunc(res,self.lazy[i])
            i>>=1
        return res
#https://github.com/shakayami/ACL-for-python/blob/master/segtree.py
class segtree():
    n=1
    size=1
    log=2
    d=[0]
    op=None
    e=10**15
    def __init__(self,V,OP,E):
        self.n=len(V)
        self.op=OP
        self.e=E
        self.log=(self.n-1).bit_length()
        self.size=1<<self.log
        self.d=[E for i in range(2*self.size)]
        for i in range(self.n):
            self.d[self.size+i]=V[i]
        for i in range(self.size-1,0,-1):
            self.update(i)
    def set(self,p,x):
        assert 0<=p and p<self.n
        p+=self.size
        self.d[p]=x
        for i in range(1,self.log+1):
            self.update(p>>i)
    def get(self,p):
        assert 0<=p and p<self.n
        return self.d[p+self.size]
    def prod(self,l,r):
        assert 0<=l and l<=r and r<=self.n
        sml=self.e
        smr=self.e
        l+=self.size
        r+=self.size
        while(l<r):
            if (l&1):
                sml=self.op(sml,self.d[l])
                l+=1
            if (r&1):
                smr=self.op(self.d[r-1],smr)
                r-=1
            l>>=1
            r>>=1
        return self.op(sml,smr)
    def all_prod(self):
        return self.d[1]
    def max_right(self,l,f):
        assert 0<=l and l<=self.n
        assert f(self.e)
        if l==self.n:
            return self.n
        l+=self.size
        sm=self.e
        while(1):
            while(l%2==0):
                l>>=1
            if not(f(self.op(sm,self.d[l]))):
                while(l<self.size):
                    l=2*l
                    if f(self.op(sm,self.d[l])):
                        sm=self.op(sm,self.d[l])
                        l+=1
                return l-self.size
            sm=self.op(sm,self.d[l])
            l+=1
            if (l&-l)==l:
                break
        return self.n
    def min_left(self,r,f):
        assert 0<=r and r<=self.n
        assert f(self.e)
        if r==0:
            return 0
        r+=self.size
        sm=self.e
        while(1):
            r-=1
            while(r>1 and (r%2)):
                r>>=1
            if not(f(self.op(self.d[r],sm))):
                while(r<self.size):
                    r=(2*r+1)
                    if f(self.op(self.d[r],sm)):
                        sm=self.op(self.d[r],sm)
                        r-=1
                return r+1-self.size
            sm=self.op(self.d[r],sm)
            if (r& -r)==r:
                break
        return 0
    def update(self,k):
        self.d[k]=self.op(self.d[2*k],self.d[2*k+1])
    def __str__(self):
        return str([self.get(i) for i in range(self.n)])
#sys.set_int_max_str_digits(0)
input = sys.stdin.readline
#n = int(input())
#
mod = 2**61-1
#alist = []
#s = input()
n,l,q = map(int,input().split())
lst = [segtree([0 for j in range(l)],lambda x,y:(x+y)%mod,0) for fjdfb in range(n)]
base = random.randint(100,10000)

s = []
base_pow = [pow(base,i,mod) for i in range(5000+10)]
for i in range(n):
    t = list(input().rstrip())
    s.append(t)
    temp = 0
    for j in range(l):
        lst[i].set(j,(ord(t[j]) - ord('a')) * base_pow[j])
        

for _ in range(q):
    query = list(input().split())

    if query[0] == '1':
        t,k,c,d = query
        k = int(k)
        k -= 1
        for i in range(n):
            if s[i][k] == c:
                lst[i].set(k,((ord(d) - ord('a')) * base_pow[k]))
            
                s[i][k] = d
    else:
        e,t = query
        t = t.rstrip()
        t = list(t)
        ans = 0
        temp = 0
        for i in range(len(t)):
            temp += (ord(t[i]) - ord('a')) * base_pow[i]
            temp %= mod
        for i in range(n):
         
            if lst[i].prod(0,len(t)) == temp:
                ans += 1
        print(ans)
0