結果

問題 No.2762 Counting and Deleting
ユーザー torisasami4
提出日時 2024-05-17 22:19:14
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 69 ms / 4,000 ms
コード長 10,818 bytes
コンパイル時間 2,301 ms
コンパイル使用メモリ 206,452 KB
最終ジャッジ日時 2025-02-21 14:58:43
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 15
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// #define _GLIBCXX_DEBUG
// #pragma GCC optimize("O2,unroll-loops")
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < int(n); i++)
#define per(i, n) for (int i = (n)-1; 0 <= i; i--)
#define rep2(i, l, r) for (int i = (l); i < int(r); i++)
#define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
template <typename T>
void print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty()) cout << '\n';
}
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
template <typename T>
bool chmax(T &x, const T &y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
return (x > y) ? (x = y, true) : false;
}
template <class T>
using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T>
using maxheap = std::priority_queue<T>;
template <typename T>
int lb(const vector<T> &v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
// __int128_t gcd(__int128_t a, __int128_t b) {
// if (a == 0)
// return b;
// if (b == 0)
// return a;
// __int128_t cnt = a % b;
// while (cnt != 0) {
// a = b;
// b = cnt;
// cnt = a % b;
// }
// return b;
// }
struct Union_Find_Tree {
vector<int> data;
const int n;
int cnt;
Union_Find_Tree(int n) : data(n, -1), n(n), cnt(n) {}
int root(int x) {
if (data[x] < 0) return x;
return data[x] = root(data[x]);
}
int operator[](int i) { return root(i); }
bool unite(int x, int y) {
x = root(x), y = root(y);
if (x == y) return false;
// if (data[x] > data[y]) swap(x, y);
data[x] += data[y], data[y] = x;
cnt--;
return true;
}
int size(int x) { return -data[root(x)]; }
int count() { return cnt; };
bool same(int x, int y) { return root(x) == root(y); }
void clear() {
cnt = n;
fill(begin(data), end(data), -1);
}
};
template <int mod>
struct Mod_Int {
int x;
Mod_Int() : x(0) {}
Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
static int get_mod() { return mod; }
Mod_Int &operator+=(const Mod_Int &p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator-=(const Mod_Int &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator*=(const Mod_Int &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
Mod_Int &operator/=(const Mod_Int &p) {
*this *= p.inverse();
return *this;
}
Mod_Int &operator++() { return *this += Mod_Int(1); }
Mod_Int operator++(int) {
Mod_Int tmp = *this;
++*this;
return tmp;
}
Mod_Int &operator--() { return *this -= Mod_Int(1); }
Mod_Int operator--(int) {
Mod_Int tmp = *this;
--*this;
return tmp;
}
Mod_Int operator-() const { return Mod_Int(-x); }
Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }
Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }
Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }
Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }
bool operator==(const Mod_Int &p) const { return x == p.x; }
bool operator!=(const Mod_Int &p) const { return x != p.x; }
Mod_Int inverse() const {
assert(*this != Mod_Int(0));
return pow(mod - 2);
}
Mod_Int pow(long long k) const {
Mod_Int now = *this, ret = 1;
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
friend ostream &operator<<(ostream &os, const Mod_Int &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, Mod_Int &p) {
long long a;
is >> a;
p = Mod_Int<mod>(a);
return is;
}
};
ll mpow(ll x, ll n, ll mod) {
ll ans = 1;
x %= mod;
while (n != 0) {
if (n & 1) ans = ans * x % mod;
x = x * x % mod;
n = n >> 1;
}
ans %= mod;
return ans;
}
template <typename T>
T modinv(T a, const T &m) {
T b = m, u = 1, v = 0;
while (b > 0) {
T t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return u >= 0 ? u % m : (m - (-u) % m) % m;
}
ll divide_int(ll a, ll b) {
if (b < 0) a = -a, b = -b;
return (a >= 0 ? a / b : (a - b + 1) / b);
}
// const int MOD = 1000000007;
const int MOD = 998244353;
using mint = Mod_Int<MOD>;
// ----- library -------
template <typename Acted_Monoid>
struct Lazy_Segment_Tree {
using Monoid = typename Acted_Monoid::Monoid;
using Operator = typename Acted_Monoid::Operator;
using M = typename Monoid::V;
using O = typename Operator::V;
int n, m, height;
vector<M> seg;
vector<O> lazy;
// f(f(a,b),c) = f(a,f(b,c)), f(e1,a) = f(a,e1) = a
// h(h(p,q),r) = h(p,h(q,r)), h(e2,p) = h(p,e2) = p
// g(f(a,b),p) = f(g(a,p),g(b,p))
// g(g(a,p),q) = g(a,h(p,q))
Lazy_Segment_Tree(const vector<M> &v) : n(v.size()) {
m = 1, height = 0;
while (m < n) m <<= 1, height++;
seg.assign(2 * m, Monoid::id), lazy.assign(2 * m, Operator::id);
copy(begin(v), end(v), begin(seg) + m);
build();
}
Lazy_Segment_Tree(int n, M x = Monoid::id) : Lazy_Segment_Tree(vector<M>(n, x)) {}
void set(int i, const M &x) { seg[m + i] = x; }
void build() {
for (int i = m - 1; i > 0; i--) seg[i] = Monoid::merge(seg[2 * i], seg[2 * i + 1]);
}
inline M reflect(int i) const { return Acted_Monoid::merge(seg[i], lazy[i]); }
inline void recalc(int i) {
while (i >>= 1) seg[i] = Monoid::merge(reflect(2 * i), reflect(2 * i + 1));
}
inline void eval(int i) {
lazy[2 * i] = Operator::merge(lazy[2 * i], lazy[i]);
lazy[2 * i + 1] = Operator::merge(lazy[2 * i + 1], lazy[i]);
seg[i] = reflect(i);
lazy[i] = Operator::id;
}
inline void thrust(int i) {
for (int j = height; j > 0; j--) eval(i >> j);
}
void update(int l, int r, const O &x) {
l = max(l, 0), r = min(r, n);
if (l >= r) return;
l += m, r += m;
thrust(l), thrust(r - 1);
int a = l, b = r;
while (l < r) {
if (l & 1) lazy[l] = Operator::merge(lazy[l], x), l++;
if (r & 1) r--, lazy[r] = Operator::merge(lazy[r], x);
l >>= 1, r >>= 1;
}
recalc(a), recalc(b - 1);
}
M query(int l, int r) {
l = max(l, 0), r = min(r, n);
if (l >= r) return Monoid::id;
l += m, r += m;
thrust(l), thrust(r - 1);
M L = Monoid::id, R = Monoid::id;
while (l < r) {
if (l & 1) L = Monoid::merge(L, reflect(l++));
if (r & 1) R = Monoid::merge(reflect(--r), R);
l >>= 1, r >>= 1;
}
return Monoid::merge(L, R);
}
M operator[](int i) { return query(i, i + 1); }
template <typename C>
int find_subtree(int i, const C &check, M &x, int type) {
while (i < m) {
eval(i);
M nxt = type ? Monoid::merge(reflect(2 * i + type), x) : Monoid::merge(x, reflect(2 * i + type));
if (check(nxt)) {
i = 2 * i + type;
} else {
x = nxt;
i = 2 * i + (type ^ 1);
}
}
return i - m;
}
// check( [l,r] ) r ( n)
template <typename C>
int find_first(int l, const C &check) {
M L = Monoid::id;
int a = l + m, b = 2 * m;
thrust(a);
while (a < b) {
if (a & 1) {
M nxt = Monoid::merge(L, reflect(a));
if (check(nxt)) return find_subtree(a, check, L, 0);
L = nxt;
a++;
}
a >>= 1, b >>= 1;
}
return n;
}
// check( [l,r) ) l ( -1)
template <typename C>
int find_last(int r, const C &check) {
M R = Monoid::id;
int a = m, b = r + m;
thrust(b - 1);
while (a < b) {
if ((b & 1) || a == 1) {
M nxt = Monoid::merge(reflect(--b), R);
if (check(nxt)) return find_subtree(b, check, R, 1);
R = nxt;
}
a >>= 1, b >>= 1;
}
return -1;
}
};
struct Data_1 {
mint a00, a01, a10, a11;
Data_1(int a, int b, int c, int d) : a00(a), a01(b), a10(c), a11(d) {}
Data_1() {}
};
struct Monoid_1 {
using V = Data_1;
static V merge(V a, V b) {
V ret;
ret.a00 = a.a00 * b.a00 + a.a01 * b.a10;
ret.a01 = a.a00 * b.a01 + a.a01 * b.a11;
ret.a10 = a.a10 * b.a00 + a.a11 * b.a10;
ret.a11 = a.a10 * b.a01 + a.a11 * b.a11;
return ret;
}
static V id;
};
Monoid_1::V Monoid_1::id = Data_1(1, 0, 0, 1);
struct Func_1 {
bool f;
Func_1(bool f) : f(f) {}
constexpr Func_1() : f(false) {}
};
struct Operator_1 {
using V = Func_1;
static V merge(V a, V b) {return V(a.f | b.f); }
static const V id;
};
constexpr Operator_1::V Operator_1::id = Func_1();
struct Acted_Monoid_1 {
using Monoid = Monoid_1;
using Operator = Operator_1;
using M = typename Monoid::V;
using O = typename Operator::V;
static M merge(M a, O b) {return (b.f ? Data_1(1, 0, 0, 1) : a); }
};
// ----- library -------
int main() {
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
cout << fixed << setprecision(15);
int n, q;
cin >> n >> q;
string s;
cin >> s;
vector<Data_1> v(n);
rep(i, n) v[i] = (s[i] == '0' ? Data_1(1, 1, 0, 1) : Data_1(1, 0, 1, 1));
Lazy_Segment_Tree<Acted_Monoid_1> seg(v);
while (q--) {
int type, l, r;
cin >> type >> l >> r;
l--;
if (type == 1)
seg.update(l, r, true);
else {
auto ret = seg.query(l, r);
cout << ret.a10 + ret.a11 - 1 << '\n';
}
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0