結果
| 問題 |
No.2758 RDQ
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-05-17 22:40:06 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 196 ms / 2,000 ms |
| コード長 | 7,429 bytes |
| コンパイル時間 | 16,061 ms |
| コンパイル使用メモリ | 389,888 KB |
| 実行使用メモリ | 29,184 KB |
| 最終ジャッジ日時 | 2024-12-20 15:48:25 |
| 合計ジャッジ時間 | 19,617 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 21 |
ソースコード
use proconio::{input, marker::Usize1};
use crate::eratosthenes_sieve::EratosthenesSieve;
const MAX: usize = 10_usize.pow(5);
fn main() {
input! {
(n, q): (usize, usize),
aa: [usize; n],
lrk: [(Usize1, usize, usize); q],
}
let sieve = EratosthenesSieve::new(MAX);
let mut positions_by_divisor = vec![vec![]; MAX + 1];
for (i, &a) in aa.iter().enumerate() {
let divisors = sieve.divisors(a);
for &divisor in &divisors {
positions_by_divisor[divisor].push(i);
}
}
for &(l, r, k) in &lrk {
let positions = &positions_by_divisor[k];
let left = positions.partition_point(|&pos| pos < l);
let right = positions.partition_point(|&pos| pos < r);
println!("{}", right - left);
}
}
pub mod eratosthenes_sieve {
//! Implements the Sieve of Eratosthenes.
//!
//! Finds the smallest prime factor of each number placed on the sieve,
//! so it can perform Prime Factorization as well as Primality Test.
#[derive(Debug, Clone)]
pub struct EratosthenesSieve {
sieve: Vec<usize>,
}
impl EratosthenesSieve {
/// Constructs a Sieve of Eratosthenes.
///
/// # Arguments
///
/// * `upper_limit` - The largest number placed on the sieve.
///
/// # Examples
///
/// ```
/// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve;
///
/// let sieve = EratosthenesSieve::new(27);
/// assert_eq!(sieve.prime_factorization(12), vec![(2, 2), (3, 1)]);
/// ```
pub fn new(upper_limit: usize) -> Self {
let mut sieve: Vec<usize> = (0..=upper_limit).collect();
for p in (2..).take_while(|&i| i * i <= upper_limit) {
if sieve[p] != p {
continue;
}
for i in ((p * p)..=upper_limit).step_by(p) {
if sieve[i] == i {
sieve[i] = p;
}
}
}
Self { sieve }
}
/// Returns the least prime factor of `n`.
///
/// However, if `n` is `1`, then `1` is returned.
///
/// # Examples
///
/// ```
/// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve;
///
/// let sieve = EratosthenesSieve::new(27);
/// assert_eq!(sieve.get_least_prime_factor(1), 1);
/// assert_eq!(sieve.get_least_prime_factor(2), 2);
/// assert_eq!(sieve.get_least_prime_factor(6), 2);
/// assert_eq!(sieve.get_least_prime_factor(11), 11);
/// assert_eq!(sieve.get_least_prime_factor(27), 3);
/// ```
pub fn get_least_prime_factor(&self, n: usize) -> usize {
assert_ne!(n, 0, "`n` must be at least 1.");
self.sieve[n]
}
/// Determines if `n` is prime.
///
/// # Examples
///
/// ```
/// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve;
///
/// let sieve = EratosthenesSieve::new(27);
/// assert!(!sieve.is_prime(1));
/// assert!(sieve.is_prime(2));
/// assert!(!sieve.is_prime(6));
/// assert!(sieve.is_prime(11));
/// assert!(!sieve.is_prime(27));
/// ```
pub fn is_prime(&self, n: usize) -> bool {
n >= 2 && self.sieve[n] == n
}
/// Performs prime factorization of `n`.
///
/// The result of the prime factorization is returned as a
/// list of prime factor and exponent pairs.
///
/// # Examples
///
/// ```
/// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve;
///
/// let sieve = EratosthenesSieve::new(27);
/// assert_eq!(sieve.prime_factorization(1), vec![]);
/// assert_eq!(sieve.prime_factorization(12), vec![(2, 2), (3, 1)]);
/// assert_eq!(sieve.prime_factorization(19), vec![(19, 1)]);
/// assert_eq!(sieve.prime_factorization(27), vec![(3, 3)]);
/// ```
pub fn prime_factorization(&self, n: usize) -> Vec<(usize, usize)> {
assert_ne!(n, 0, "`n` must be at least 1.");
let mut n = n;
let mut factors: Vec<(usize, usize)> = vec![];
while n != 1 {
let p = self.sieve[n];
if factors.is_empty() || factors.last().unwrap().0 != p {
factors.push((p, 1));
} else {
factors.last_mut().unwrap().1 += 1;
}
n /= p;
}
factors
}
/// Creates a list of positive divisors of `n`.
///
/// The positive divisors are listed in ascending order.
///
/// # Examples
///
/// ```
/// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve;
///
/// let sieve = EratosthenesSieve::new(27);
/// assert_eq!(sieve.create_divisor_list(1), vec![1]);
/// assert_eq!(sieve.create_divisor_list(12), vec![1, 2, 3, 4, 6, 12]);
/// assert_eq!(sieve.create_divisor_list(19), vec![1, 19]);
/// assert_eq!(sieve.create_divisor_list(27), vec![1, 3, 9, 27]);
/// ```
pub fn divisors(&self, n: usize) -> Vec<usize> {
assert_ne!(n, 0, "`n` must be at least 1.");
let prime_factors = self.prime_factorization(n);
let divisor_num: usize = prime_factors.iter().map(|&(_, exp)| exp + 1).product();
let mut divisors = vec![1];
divisors.reserve(divisor_num - 1);
for (p, e) in prime_factors {
let mut add_divisors = vec![];
add_divisors.reserve(divisors.len() * e);
let mut mul = 1;
for _ in 1..=e {
mul *= p;
for &d in divisors.iter() {
add_divisors.push(d * mul);
}
}
divisors.append(&mut add_divisors);
}
divisors.sort_unstable();
divisors
}
/// Calculates the number of positive divisors of `n`.
///
/// # Examples
///
/// ```
/// use atcoder8_library::eratosthenes_sieve::EratosthenesSieve;
///
/// let sieve = EratosthenesSieve::new(27);
/// assert_eq!(sieve.calc_divisor_num(1), 1);
/// assert_eq!(sieve.calc_divisor_num(12), 6);
/// assert_eq!(sieve.calc_divisor_num(19), 2);
/// assert_eq!(sieve.calc_divisor_num(27), 4);
/// ```
pub fn calc_divisor_num(&self, n: usize) -> usize {
assert_ne!(n, 0, "`n` must be at least 1.");
let mut n = n;
let mut divisor_num = 1;
let mut cur_p = None;
let mut cur_exp = 0;
while n != 1 {
let p = self.sieve[n];
if Some(p) == cur_p {
cur_exp += 1;
} else {
divisor_num *= cur_exp + 1;
cur_p = Some(p);
cur_exp = 1;
}
n /= p;
}
divisor_num *= cur_exp + 1;
divisor_num
}
}
}