結果
| 問題 |
No.2764 Warp Drive Spacecraft
|
| コンテスト | |
| ユーザー |
PNJ
|
| 提出日時 | 2024-05-17 22:58:52 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 7,063 bytes |
| コンパイル時間 | 359 ms |
| コンパイル使用メモリ | 82,264 KB |
| 実行使用メモリ | 170,368 KB |
| 最終ジャッジ日時 | 2024-12-20 15:53:14 |
| 合計ジャッジ時間 | 50,641 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 28 TLE * 7 |
ソースコード
import heapq
def dijkstra(s, n, edge):
dist = [1 << 63]*n
dist[s] = 0
hq = [[0,s]]
heapq.heapify(hq)
while len(hq) > 0:
d,i = heapq.heappop(hq)
if dist[i] < d:
continue
for j,d_1 in edge[i]:
if dist[j] > (dist[i] + d_1):
dist[j] = dist[i] + d_1
heapq.heappush(hq, [dist[j],j])
return dist
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional
T = TypeVar('T')
class SortedMultiset(Generic[T]):
BUCKET_RATIO = 16
SPLIT_RATIO = 24
def __init__(self, a: Iterable[T] = []) -> None:
"Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)"
a = list(a)
n = self.size = len(a)
if any(a[i] > a[i + 1] for i in range(n - 1)):
a.sort()
bucket_size = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO)))
self.a = [a[n * i // bucket_size : n * (i + 1) // bucket_size] for i in range(bucket_size)]
def __iter__(self) -> Iterator[T]:
for i in self.a:
for j in i: yield j
def __reversed__(self) -> Iterator[T]:
for i in reversed(self.a):
for j in reversed(i): yield j
def __eq__(self, other) -> bool:
return list(self) == list(other)
def __len__(self) -> int:
return self.size
def __repr__(self) -> str:
return "SortedMultiset" + str(self.a)
def __str__(self) -> str:
s = str(list(self))
return "{" + s[1 : len(s) - 1] + "}"
def _position(self, x: T) -> Tuple[List[T], int, int]:
"return the bucket, index of the bucket and position in which x should be. self must not be empty."
for i, a in enumerate(self.a):
if x <= a[-1]: break
return (a, i, bisect_left(a, x))
def __contains__(self, x: T) -> bool:
if self.size == 0: return False
a, _, i = self._position(x)
return i != len(a) and a[i] == x
def count(self, x: T) -> int:
"Count the number of x."
return self.index_right(x) - self.index(x)
def add(self, x: T) -> None:
"Add an element. / O(√N)"
if self.size == 0:
self.a = [[x]]
self.size = 1
return
a, b, i = self._position(x)
a.insert(i, x)
self.size += 1
if len(a) > len(self.a) * self.SPLIT_RATIO:
mid = len(a) >> 1
self.a[b:b+1] = [a[:mid], a[mid:]]
def _pop(self, a: List[T], b: int, i: int) -> T:
ans = a.pop(i)
self.size -= 1
if not a: del self.a[b]
return ans
def discard(self, x: T) -> bool:
"Remove an element and return True if removed. / O(√N)"
if self.size == 0: return False
a, b, i = self._position(x)
if i == len(a) or a[i] != x: return False
self._pop(a, b, i)
return True
def lt(self, x: T) -> Optional[T]:
"Find the largest element < x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] < x:
return a[bisect_left(a, x) - 1]
def le(self, x: T) -> Optional[T]:
"Find the largest element <= x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] <= x:
return a[bisect_right(a, x) - 1]
def gt(self, x: T) -> Optional[T]:
"Find the smallest element > x, or None if it doesn't exist."
for a in self.a:
if a[-1] > x:
return a[bisect_right(a, x)]
def ge(self, x: T) -> Optional[T]:
"Find the smallest element >= x, or None if it doesn't exist."
for a in self.a:
if a[-1] >= x:
return a[bisect_left(a, x)]
def __getitem__(self, i: int) -> T:
"Return the i-th element."
if i < 0:
for a in reversed(self.a):
i += len(a)
if i >= 0: return a[i]
else:
for a in self.a:
if i < len(a): return a[i]
i -= len(a)
raise IndexError
def pop(self, i: int = -1) -> T:
"Pop and return the i-th element."
if i < 0:
for b, a in enumerate(reversed(self.a)):
i += len(a)
if i >= 0: return self._pop(a, ~b, i)
else:
for b, a in enumerate(self.a):
if i < len(a): return self._pop(a, b, i)
i -= len(a)
raise IndexError
def bisect(self, x: T) -> int:
"Count the number of elements < x."
ans = 0
for a in self.a:
if a[-1] >= x:
return ans + bisect_left(a, x)
ans += len(a)
return ans
def index_right(self, x: T) -> int:
"Count the number of elements <= x."
ans = 0
for a in self.a:
if a[-1] > x:
return ans + bisect_right(a, x)
ans += len(a)
return ans
class ConvexHullTrick:
def __init__(self):
self.L = SortedMultiset([])
self.n = 0
def check(self,a,b):
if self.n == 0:
return True
x = self.L.bisect((a,b))
if x == 0:
aa,bb = self.L[0]
if a != aa:
return True
if b < bb:
return True
else:
return False
elif x == self.n:
aa,bb = self.L[-1]
if a != aa:
return True
if b < bb:
return True
else:
return False
else:
al,bl = self.L[x-1]
ar,br = self.L[x]
if (br-b)*(a-al) >= (b-bl)*(ar-a):
return True
else:
return False
def add(self,a,b): # y=ax+bを追加する。
if self.check(a,b):
x = self.L.bisect((a,b))
self.L.add((a,b))
self.n += 1
l = x - 1
r = x + 1
while r < self.n:
a,b = self.L[r]
self.L.discard((a,b))
self.n -= 1
if self.check(a,b):
self.L.add((a,b))
self.n += 1
break
while l > 0:
a,b = self.L[l]
self.L.discard((a,b))
l -= 1
self.n -= 1
if self.check(a,b):
self.L.add((a,b))
self.n += 1
break
def min(self,x):
l = 0
r = self.n
while r - l > 1:
m = (l + r) // 2
a,b = self.L[m]
aa,bb = self.L[m-1]
if a*x + b <= aa*x + bb:
l = m
else:
r = m
a,b = self.L[l]
return a*x + b
def get(self):
return self.L
N,M = map(int,input().split())
W = list(map(int,input().split()))
G = [[] for i in range(N)]
for _ in range(M):
u,v,t = map(int,input().split())
u,v = u - 1,v - 1
G[u].append((v,t))
G[v].append((u,t))
CHT = ConvexHullTrick()
dist_s = dijkstra(0,N,G)
dist_g = dijkstra(N-1,N,G)
for i in range(N):
w,d = W[i],dist_g[i]
CHT.add(w,d)
ans = dist_s[N-1]
for i in range(N):
w,d = W[i],dist_s[i]
res = CHT.min(w) + d
ans = min(ans,res)
print(ans)
PNJ