結果
問題 | No.196 典型DP (1) |
ユーザー | ngtkana |
提出日時 | 2024-05-28 21:10:30 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 24 ms / 2,000 ms |
コード長 | 20,457 bytes |
コンパイル時間 | 13,966 ms |
コンパイル使用メモリ | 400,504 KB |
実行使用メモリ | 24,960 KB |
最終ジャッジ日時 | 2024-12-20 20:54:34 |
合計ジャッジ時間 | 15,795 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,820 KB |
testcase_01 | AC | 1 ms
6,820 KB |
testcase_02 | AC | 1 ms
6,820 KB |
testcase_03 | AC | 1 ms
6,820 KB |
testcase_04 | AC | 1 ms
6,816 KB |
testcase_05 | AC | 1 ms
6,816 KB |
testcase_06 | AC | 1 ms
6,820 KB |
testcase_07 | AC | 1 ms
6,816 KB |
testcase_08 | AC | 1 ms
6,816 KB |
testcase_09 | AC | 1 ms
6,820 KB |
testcase_10 | AC | 1 ms
6,820 KB |
testcase_11 | AC | 1 ms
6,820 KB |
testcase_12 | AC | 1 ms
6,816 KB |
testcase_13 | AC | 1 ms
6,820 KB |
testcase_14 | AC | 1 ms
6,816 KB |
testcase_15 | AC | 2 ms
6,816 KB |
testcase_16 | AC | 2 ms
6,820 KB |
testcase_17 | AC | 3 ms
6,816 KB |
testcase_18 | AC | 4 ms
6,824 KB |
testcase_19 | AC | 4 ms
6,816 KB |
testcase_20 | AC | 2 ms
6,816 KB |
testcase_21 | AC | 3 ms
6,820 KB |
testcase_22 | AC | 2 ms
6,816 KB |
testcase_23 | AC | 9 ms
8,960 KB |
testcase_24 | AC | 3 ms
6,820 KB |
testcase_25 | AC | 10 ms
7,936 KB |
testcase_26 | AC | 2 ms
6,820 KB |
testcase_27 | AC | 8 ms
9,216 KB |
testcase_28 | AC | 20 ms
20,864 KB |
testcase_29 | AC | 23 ms
24,448 KB |
testcase_30 | AC | 24 ms
24,960 KB |
testcase_31 | AC | 2 ms
6,816 KB |
testcase_32 | AC | 13 ms
6,816 KB |
testcase_33 | AC | 12 ms
6,820 KB |
testcase_34 | AC | 12 ms
6,820 KB |
testcase_35 | AC | 12 ms
6,820 KB |
testcase_36 | AC | 2 ms
6,816 KB |
testcase_37 | AC | 6 ms
6,816 KB |
testcase_38 | AC | 11 ms
6,820 KB |
testcase_39 | AC | 10 ms
6,820 KB |
testcase_40 | AC | 11 ms
6,820 KB |
testcase_41 | AC | 1 ms
6,816 KB |
testcase_42 | AC | 1 ms
6,820 KB |
testcase_43 | AC | 1 ms
6,816 KB |
コンパイルメッセージ
warning: unused import: `factorial::Factorial` --> src/main.rs:280:13 | 280 | pub use factorial::Factorial; | ^^^^^^^^^^^^^^^^^^^^ | = note: `#[warn(unused_imports)]` on by default warning: unused import: `fourier::any_mod_fps_mul` --> src/main.rs:281:13 | 281 | pub use fourier::any_mod_fps_mul; | ^^^^^^^^^^^^^^^^^^^^^^^^ warning: unused import: `fourier::fft` --> src/main.rs:282:13 | 282 | pub use fourier::fft; | ^^^^^^^^^^^^ warning: unused import: `fourier::fps_mul` --> src/main.rs:283:13 | 283 | pub use fourier::fps_mul; | ^^^^^^^^^^^^^^^^ warning: unused import: `fourier::ifft` --> src/main.rs:284:13 | 284 | pub use fourier::ifft; | ^^^^^^^^^^^^^
ソースコード
use naive_poly::mul; type Fp = fp::Fp<1_000_000_007>; fn main() { let stdin = std::io::read_to_string(std::io::stdin()).unwrap(); let mut stdin = stdin.split_whitespace(); let n: usize = stdin.next().unwrap().parse().unwrap(); let k: usize = stdin.next().unwrap().parse().unwrap(); let mut g = vec![Vec::new(); n]; for _ in 0..n - 1 { let i: usize = stdin.next().unwrap().parse().unwrap(); let j: usize = stdin.next().unwrap().parse().unwrap(); g[i].push(j); g[j].push(i); } let mut parent = vec![usize::MAX; n]; let mut stack = vec![0]; let mut sorted = Vec::new(); while let Some(x) = stack.pop() { sorted.push(x); g[x].retain(|&y| y != parent[x]); for &y in &g[x] { parent[y] = x; stack.push(y); } } let mut dp = vec![vec![Fp::new(1)]; n]; for &x in sorted.iter().rev() { for &y in &g[x] { dp[x] = mul(&dp[x], &dp[y]); } dp[x].push(fp!(1)); dp[x].truncate(k + 1); } let ans = dp[0][k]; println!("{}", ans); } // fp {{{ // https://ngtkana.github.io/ac-adapter-rs/fp/index.html #[allow(dead_code)] mod fp { mod ext_gcd { pub(crate) fn mod_inv<const P: u64>(x: u64) -> u64 { debug_assert!(P % 2 == 1); debug_assert!(P < 1 << 31); debug_assert!(x < P); mod_inv_signed(x as i64, P as i64) as u64 } fn mod_inv_signed(a: i64, m: i64) -> i64 { debug_assert!(a > 0); debug_assert!(m > 0); if a == 1 { return 1; } m + (1 - m * mod_inv_signed(m % a, a)) / a } } mod factorial { use super::Fp; use std::ops::Index; pub struct Factorial<const P: u64> { fact: Vec<Fp<P>>, inv_fact: Vec<Fp<P>>, } impl<const P: u64> Factorial<P> { pub fn new(length: usize) -> Self { let mut fact = vec![Fp::<P>::new(1); length + 1]; let mut inv_fact = vec![Fp::<P>::new(1); length + 1]; for i in 1..=length { fact[i] = fact[i - 1] * Fp::<P>::new(i as u64); } inv_fact[length] = fact[length].inv(); for i in (1..=length).rev() { inv_fact[i - 1] = inv_fact[i] * Fp::<P>::new(i as u64); } Self { fact, inv_fact } } pub fn fact(&self, n: usize) -> Fp<P> { self.fact[n] } pub fn inv_fact(&self, n: usize) -> Fp<P> { self.inv_fact[n] } pub fn perm(&self, n: usize, k: usize) -> Fp<P> { self.fact[n] * self.inv_fact[n - k] } pub fn comb(&self, n: usize, k: usize) -> Fp<P> { self.fact[n] * self.inv_fact[n - k] * self.inv_fact[k] } pub fn binom(&self, n: usize, k: usize) -> Fp<P> { self.comb(n, k) } pub fn comb_or_zero(&self, n: usize, k: isize) -> Fp<P> { if k < 0 || k as usize > n { Fp::<P>::new(0) } else { self.comb(n, k as usize) } } pub fn comb_with_reputation(&self, n: usize, k: usize) -> Fp<P> { assert!(n > 0 || k > 0); self.comb(n + k - 1, k) } } impl<const P: u64> Index<usize> for Factorial<P> { type Output = Fp<P>; fn index(&self, index: usize) -> &Self::Output { &self.fact[index] } } } mod fourier { use super::mod_inv; use super::Fp; use super::PrimitiveRoot; const P1: u64 = 924844033; const P2: u64 = 998244353; const P3: u64 = 1012924417; type F1 = Fp<P1>; type F2 = Fp<P2>; type F3 = Fp<P3>; pub fn fps_mul<const P: u64>(a: impl AsRef<[Fp<P>]>, b: impl AsRef<[Fp<P>]>) -> Vec<Fp<P>> where (): PrimitiveRoot<P>, { let a = a.as_ref(); let b = b.as_ref(); if a.is_empty() || b.is_empty() { return vec![]; } let mut a = a.to_vec(); let mut b = b.to_vec(); let n = a.len() + b.len() - 1; let len = n.next_power_of_two(); a.resize(len, Fp::new(0)); b.resize(len, Fp::new(0)); fft(&mut a); fft(&mut b); for (a, b) in a.iter_mut().zip(b.iter()) { *a *= *b; } ifft(&mut a); a.truncate(n); a } pub fn any_mod_fps_mul<const P: u64>(a: &[Fp<P>], b: &[Fp<P>]) -> Vec<Fp<P>> { let v1 = fps_mul( a.iter().map(|&x| F1::new(x.value())).collect::<Vec<_>>(), b.iter().map(|&x| F1::new(x.value())).collect::<Vec<_>>(), ); let v2 = fps_mul( a.iter().map(|&x| F2::new(x.value())).collect::<Vec<_>>(), b.iter().map(|&x| F2::new(x.value())).collect::<Vec<_>>(), ); let v3 = fps_mul( a.iter().map(|&x| F3::new(x.value())).collect::<Vec<_>>(), b.iter().map(|&x| F3::new(x.value())).collect::<Vec<_>>(), ); v1.into_iter() .zip(v2) .zip(v3) .map(|((e1, e2), e3)| garner(e1, e2, e3)) .collect::<Vec<_>>() } pub fn fft<const P: u64>(f: &mut [Fp<P>]) where (): PrimitiveRoot<P>, { let n = f.len(); assert!(n.is_power_of_two()); assert!((P - 1) % n as u64 == 0); let mut root = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / f.len() as u64); let fourth = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / 4); let mut fft_len = n; while 4 <= fft_len { let quarter = fft_len / 4; for f in f.chunks_mut(fft_len) { let mut c = Fp::new(1); for (((i, j), k), l) in (0..) .zip(quarter..) .zip(quarter * 2..) .zip(quarter * 3..) .take(quarter) { let c2 = c * c; let x = f[i] + f[k]; let y = f[j] + f[l]; let z = f[i] - f[k]; let w = fourth * (f[j] - f[l]); f[i] = x + y; f[j] = c2 * (x - y); f[k] = c * (z + w); f[l] = c2 * c * (z - w); c *= root; } } root *= root; root *= root; fft_len = quarter; } if fft_len == 2 { for f in f.chunks_mut(2) { let x = f[0]; let y = f[1]; f[0] = x + y; f[1] = x - y; } } } pub fn ifft<const P: u64>(f: &mut [Fp<P>]) where (): PrimitiveRoot<P>, { let n = f.len(); assert!(n.is_power_of_two()); let root = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / f.len() as u64); let mut roots = std::iter::successors(Some(root.inv()), |x| Some(x * x)) .take(n.trailing_zeros() as usize + 1) .collect::<Vec<_>>(); roots.reverse(); let fourth = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / 4).inv(); let mut quarter = 1_usize; if n.trailing_zeros() % 2 == 1 { for f in f.chunks_mut(2) { let x = f[0]; let y = f[1]; f[0] = x + y; f[1] = x - y; } quarter = 2; } while quarter != n { let fft_len = quarter * 4; let root = roots[fft_len.trailing_zeros() as usize]; for f in f.chunks_mut(fft_len) { let mut c = Fp::new(1); for (((i, j), k), l) in (0..) .zip(quarter..) .zip(quarter * 2..) .zip(quarter * 3..) .take(quarter) { let c2 = c * c; let x = f[i] + c2 * f[j]; let y = f[i] - c2 * f[j]; let z = c * (f[k] + c2 * f[l]); let w = fourth * c * (f[k] - c2 * f[l]); f[i] = x + z; f[j] = y + w; f[k] = x - z; f[l] = y - w; c *= root; } } quarter = fft_len; } let d = Fp::from(f.len()).inv(); f.iter_mut().for_each(|x| *x *= d); } fn garner<const P: u64>(x1: Fp<P1>, x2: Fp<P2>, x3: Fp<P3>) -> Fp<P> { let (x1, x2, x3) = (x1.value(), x2.value(), x3.value()); let x2 = ((x2 + (P2 - x1)) * mod_inv::<P2>(P1)) % P2; let x3 = (((x3 + (P3 - x1)) * mod_inv::<P3>(P1) % P3 + (P3 - x2)) * mod_inv::<P3>(P2)) % P3; Fp::new(x1 + P1 * (x2 + P2 * x3 % P)) } } use ext_gcd::mod_inv; pub use factorial::Factorial; pub use fourier::any_mod_fps_mul; pub use fourier::fft; pub use fourier::fps_mul; pub use fourier::ifft; use std::iter::Product; use std::iter::Sum; use std::mem::swap; use std::ops::Add; use std::ops::AddAssign; use std::ops::Div; use std::ops::DivAssign; use std::ops::Mul; use std::ops::MulAssign; use std::ops::Neg; use std::ops::Sub; use std::ops::SubAssign; #[macro_export] macro_rules! fp { ($value:expr) => { $crate::fp::Fp::from($value) }; ($value:expr; mod $p:expr) => { $crate::fp::Fp::<$p>::from($value) }; } pub trait PrimitiveRoot<const P: u64> { const VALUE: Fp<P>; } impl PrimitiveRoot<998244353> for () { const VALUE: Fp<998244353> = Fp::new(3); } impl PrimitiveRoot<1012924417> for () { const VALUE: Fp<1012924417> = Fp::new(5); } impl PrimitiveRoot<924844033> for () { const VALUE: Fp<924844033> = Fp::new(5); } #[derive(Clone, Copy, PartialEq, Eq, Hash)] pub struct Fp<const P: u64> { value: u64, } impl<const P: u64> Fp<P> { pub const fn new(value: u64) -> Self { Self { value: value % P } } pub const fn value(self) -> u64 { self.value } pub fn inv(self) -> Self { Self { value: mod_inv::<P>(self.value), } } pub fn pow(self, mut exp: u64) -> Self { let mut result = Self::new(1); let mut base = self; while exp > 0 { if exp & 1 == 1 { result *= base; } base *= base; exp >>= 1; } result } pub fn sign(pow: usize) -> Self { Self::new(if pow % 2 == 0 { 1 } else { P - 1 }) } } impl<const P: u64> std::fmt::Debug for Fp<P> { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { pub fn berlekamp_massey_fp(a: i64, p: i64) -> [i64; 2] { let mut u0 = 0_i64; let mut v0 = 1_i64; let mut w0 = a * u0 + p * v0; let mut u1 = 1_i64; let mut v1 = 0_i64; let mut w1 = a * u1 + p * v1; while p <= w0 * w0 { let q = w0 / w1; u0 -= q * u1; v0 -= q * v1; w0 -= q * w1; swap(&mut u0, &mut u1); swap(&mut v0, &mut v1); swap(&mut w0, &mut w1); } [w0, u0] } if self.value == 0 { return write!(f, "0"); } let [mut num, mut den] = berlekamp_massey_fp(self.value as i64, P as i64); if den < 0 { num = -num; den = -den; } if den == 1 { write!(f, "{}", num) } else { write!(f, "{}/{}", num, den) } } } impl<const P: u64> std::fmt::Display for Fp<P> { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { write!(f, "{}", self.value()) } } macro_rules! impl_from_signed { ($($t:ty),*) => { $( impl<const P: u64> From<$t> for Fp<P> { fn from(x: $t) -> Self { if x < 0 { -Self::new((P as i64 - x as i64) as u64) } else { Self::new(x as u64) } } } )* }; } impl_from_signed!(i8, i16, i32, i64, i128, isize); macro_rules! impl_from_unsigned { ($($t:ty),*) => { $( impl<const P: u64> From<$t> for Fp<P> { fn from(x: $t) -> Self { Self::new(x as u64) } } )* }; } impl_from_unsigned!(u8, u16, u32, u64, u128, usize); impl<const P: u64> AddAssign<Fp<P>> for Fp<P> { fn add_assign(&mut self, rhs: Fp<P>) { self.value += rhs.value; if self.value >= P { self.value -= P; } } } impl<const P: u64> SubAssign<Fp<P>> for Fp<P> { fn sub_assign(&mut self, rhs: Fp<P>) { if self.value < rhs.value { self.value += P; } self.value -= rhs.value; } } impl<const P: u64> MulAssign<Fp<P>> for Fp<P> { fn mul_assign(&mut self, rhs: Fp<P>) { self.value = self.value * rhs.value % P; } } #[allow(clippy::suspicious_op_assign_impl)] impl<const P: u64> DivAssign<Fp<P>> for Fp<P> { fn div_assign(&mut self, rhs: Fp<P>) { *self *= rhs.inv() } } macro_rules! fp_forward_ops { ($( $trait:ident, $trait_assign:ident, $fn:ident, $fn_assign:ident, )*) => {$( impl<const P: u64> $trait_assign<&Fp<P>> for Fp<P> { fn $fn_assign(&mut self, rhs: &Fp<P>) { self.$fn_assign(*rhs); } } impl<const P: u64, T: Into<Fp<P>>> $trait<T> for Fp<P> { type Output = Fp<P>; fn $fn(mut self, rhs: T) -> Self::Output { self.$fn_assign(rhs.into()); self } } impl<const P: u64> $trait<&Fp<P>> for Fp<P> { type Output = Fp<P>; fn $fn(self, rhs: &Fp<P>) -> Self::Output { self.$fn(*rhs) } } impl<const P: u64, T: Into<Fp<P>>> $trait<T> for &Fp<P> { type Output = Fp<P>; fn $fn(self, rhs: T) -> Self::Output { (*self).$fn(rhs.into()) } } impl<const P: u64> $trait<&Fp<P>> for &Fp<P> { type Output = Fp<P>; fn $fn(self, rhs: &Fp<P>) -> Self::Output { (*self).$fn(*rhs) } } )*}; } fp_forward_ops! { Add, AddAssign, add, add_assign, Sub, SubAssign, sub, sub_assign, Mul, MulAssign, mul, mul_assign, Div, DivAssign, div, div_assign, } impl<const P: u64> Neg for Fp<P> { type Output = Fp<P>; fn neg(mut self) -> Self::Output { if self.value > 0 { self.value = P - self.value; } self } } impl<const P: u64> Sum for Fp<P> { fn sum<I: Iterator<Item = Self>>(iter: I) -> Self { iter.fold(Self::new(0), |acc, x| acc + x) } } impl<'a, const P: u64> Sum<&'a Self> for Fp<P> { fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self { iter.copied().sum() } } impl<const P: u64> Product for Fp<P> { fn product<I: Iterator<Item = Self>>(iter: I) -> Self { iter.fold(Self::new(1), |acc, x| acc * x) } } impl<'a, const P: u64> Product<&'a Self> for Fp<P> { fn product<I: Iterator<Item = &'a Self>>(iter: I) -> Self { iter.copied().product() } } } // }}} // naive_poly {{{ // https://ngtkana.github.io/ac-adapter-rs/naive_poly/index.html #[allow(dead_code)] mod naive_poly { use std::iter::Product; use std::iter::Sum; use std::ops::AddAssign; use std::ops::Div; use std::ops::Mul; use std::ops::MulAssign; use std::ops::SubAssign; fn zero<T>() -> T where T: Sum<T>, { std::iter::empty().sum() } fn one<T>() -> T where T: Product<T>, { std::iter::empty().product() } pub fn mul<T>(a: &[T], b: &[T]) -> Vec<T> where T: Copy + Sum<T> + Mul<Output = T> + AddAssign, { if a.is_empty() || b.is_empty() { return vec![zero(); 0]; } let mut c = vec![zero(); a.len() + b.len() - 1]; for (i, &ai) in a.iter().enumerate() { for (j, &bj) in b.iter().enumerate() { c[i + j] += ai * bj; } } c } pub fn add<T>(a: &[T], b: &[T]) -> Vec<T> where T: Copy + PartialEq + Sum<T> + AddAssign, { let mut c = vec![zero(); a.len().max(b.len())]; for (i, &ai) in a.iter().enumerate() { c[i] += ai; } for (i, &bi) in b.iter().enumerate() { c[i] += bi; } while c.last() == Some(&zero()) { c.pop().unwrap(); } c } pub fn sub<T>(a: &[T], b: &[T]) -> Vec<T> where T: Copy + PartialEq + Sum<T> + AddAssign + SubAssign + Mul<Output = T>, { let mut c = vec![zero(); a.len().max(b.len())]; for (i, &ai) in a.iter().enumerate() { c[i] += ai; } for (i, &bi) in b.iter().enumerate() { c[i] -= bi; } while c.last() == Some(&zero()) { c.pop().unwrap(); } c } pub fn div<T>(a: &mut Vec<T>, b: &[T]) -> Vec<T> where T: Copy + PartialEq + Sum<T> + SubAssign + Mul<Output = T> + Div<Output = T>, { assert!(!b.is_empty() && *b.last().unwrap() != zero::<T>()); if a.len() < b.len() { return vec![zero(); 0]; } let mut c = vec![zero(); a.len() + 1 - b.len()]; for i in (0..c.len()).rev() { c[i] = a[i] / *b.last().unwrap(); for j in 0..b.len() { a[i + j] -= c[i] * b[j]; } } while a.last() == Some(&zero()) { a.pop().unwrap(); } c } pub fn eval<T>(p: &[T], x: T) -> T where T: Copy + Sum<T> + Mul<Output = T> + AddAssign + MulAssign, { let mut y = zero(); for &pi in p.iter().rev() { y *= x; y += pi; } y } pub fn pow<T>(mut a: Vec<T>, mut e: u64) -> Vec<T> where T: Copy + PartialEq + Sum<T> + Product<T> + AddAssign + Mul<Output = T>, { if e == 0 { return vec![one(); 1]; } let mut b = vec![zero(); 1]; b[0] = one(); while e > 1 { if e % 2 == 1 { b = mul(&b, &a); } a = mul(&a, &a); e /= 2; } mul(&b, &a) } } // }}}