結果
問題 | No.2990 Interval XOR |
ユーザー | akakimidori |
提出日時 | 2024-05-29 23:00:10 |
言語 | Rust (1.77.0 + proconio) |
結果 |
TLE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 15,005 bytes |
コンパイル時間 | 16,844 ms |
コンパイル使用メモリ | 386,868 KB |
実行使用メモリ | 22,824 KB |
最終ジャッジ日時 | 2024-12-14 23:31:07 |
合計ジャッジ時間 | 64,558 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
13,636 KB |
testcase_01 | AC | 2 ms
9,892 KB |
testcase_02 | AC | 1 ms
9,632 KB |
testcase_03 | AC | 1 ms
9,632 KB |
testcase_04 | AC | 1 ms
11,428 KB |
testcase_05 | AC | 1 ms
11,428 KB |
testcase_06 | AC | 1 ms
13,632 KB |
testcase_07 | AC | 1 ms
10,016 KB |
testcase_08 | AC | 1 ms
13,636 KB |
testcase_09 | AC | 1 ms
11,428 KB |
testcase_10 | AC | 1 ms
11,556 KB |
testcase_11 | AC | 1 ms
11,684 KB |
testcase_12 | AC | 1 ms
13,636 KB |
testcase_13 | AC | 5 ms
22,660 KB |
testcase_14 | AC | 1 ms
13,640 KB |
testcase_15 | AC | 9 ms
13,768 KB |
testcase_16 | AC | 1 ms
13,636 KB |
testcase_17 | AC | 4 ms
22,824 KB |
testcase_18 | AC | 14 ms
13,636 KB |
testcase_19 | AC | 1 ms
22,672 KB |
testcase_20 | AC | 9 ms
22,760 KB |
testcase_21 | AC | 2 ms
13,640 KB |
testcase_22 | AC | 8 ms
13,640 KB |
testcase_23 | AC | 2 ms
22,796 KB |
testcase_24 | AC | 8 ms
13,640 KB |
testcase_25 | TLE | - |
testcase_26 | TLE | - |
testcase_27 | AC | 1,543 ms
6,816 KB |
testcase_28 | TLE | - |
testcase_29 | TLE | - |
testcase_30 | TLE | - |
testcase_31 | TLE | - |
testcase_32 | TLE | - |
testcase_33 | TLE | - |
testcase_34 | TLE | - |
testcase_35 | TLE | - |
testcase_36 | TLE | - |
testcase_37 | TLE | - |
testcase_38 | TLE | - |
testcase_39 | TLE | - |
コンパイルメッセージ
warning: unused import: `std::io::Write` --> src/main.rs:1:5 | 1 | use std::io::Write; | ^^^^^^^^^^^^^^ | = note: `#[warn(unused_imports)]` on by default warning: unused variable: `b` --> src/main.rs:16:36 | 16 | pub fn xor_convolution<T>(a: &[T], b: &[T]) -> Vec<T> | ^ help: if this is intentional, prefix it with an underscore: `_b` | = note: `#[warn(unused_variables)]` on by default warning: associated constants `PRIMITIVE_ROOT` and `ORDER` are never used --> src/main.rs:227:11 | 211 | impl<const M: u32> ModInt<{ M }> { | -------------------------------- associated constants in this implementation ... 227 | const PRIMITIVE_ROOT: u32 = primitive_root(M); | ^^^^^^^^^^^^^^ 228 | const ORDER: usize = 1 << (M - 1).trailing_zeros(); | ^^^^^ | = note: `#[warn(dead_code)]` on by default warning: struct `NTTPrecalc` is never constructed --> src/main.rs:440:8 | 440 | struct NTTPrecalc<const M: u32> { | ^^^^^^^^^^ warning: associated function `new` is never used --> src/main.rs:446:14 | 445 | impl<const M: u32> NTTPrecalc<{ M }> { | ------------------------------------ associated function in this implementation 446 | const fn new() -> Self { | ^^^ warning: struct `NTTPrecalcHelper` is never constructed --> src/main.rs:478:8 | 478 | struct NTTPrecalcHelper<const MOD: u32>; | ^^^^^^^^^^^^^^^^ warning: associated constant `A` is never used --> src/main.rs:480:11 | 479 | impl<const MOD: u32> NTTPrecalcHelper<MOD> { | ------------------------------------------ associated constant in this implementation 480 | const A: NTTPrecalc<MOD> = NTTPrecalc::new(); | ^
ソースコード
use std::io::Write; fn main() { input! { n: usize, m: usize, p: [(usize, usize); m], } let p = p.into_iter().map(|p| (p.0, p.1 + 1)).collect::<Vec<_>>(); let ans = naive(n, &p); for a in ans { println!("{}", a); } } pub fn xor_convolution<T>(a: &[T], b: &[T]) -> Vec<T> where T: Field + Copy, { let mut x = Vec::from(a); let mut y = Vec::from(a); fwht(&mut x); fwht(&mut y); for (x, y) in x.iter_mut().zip(y.iter()) { *x = *x * *y; } fwht(&mut x); let inv_2 = T::one() / (T::one() + T::one()); let mut mul = T::one(); let n = x.len().trailing_zeros(); for _ in 0..n { mul = mul * inv_2; } for x in x.iter_mut() { *x = *x * mul; } x } fn naive(n: usize, p: &[(usize, usize)]) -> Vec<M> { let mut table = vec![M::one(); 1 << n]; let mut dp = vec![M::zero(); 1 << n]; for &(l, r) in p.iter() { dp.fill(M::zero()); dp[l..r].fill(M::one()); fwht(&mut dp); table.dot_assign(&dp); } fwht(&mut table); let inv = M::new(2).pow(n as u64).inv(); table.into_iter().map(|a| a * inv).collect() } fn fwht<T>(a: &mut [T]) where T: std::ops::Add<Output = T> + std::ops::Sub<Output = T> + Copy, { bitwise_transform(a, |a, b| { let x = *a + *b; let y = *a - *b; *a = x; *b = y; }); } type M = ModInt<998244353>; // ---------- begin input macro ---------- // reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 #[macro_export] macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } #[macro_export] macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } #[macro_export] macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::<Vec<char>>() }; ($iter:expr, bytes) => { read_value!($iter, String).bytes().collect::<Vec<u8>>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } // ---------- end input macro ---------- use std::ops::*; // ---------- begin trait ---------- pub trait Zero: Sized + Add<Self, Output = Self> { fn zero() -> Self; fn is_zero(&self) -> bool; } pub trait One: Sized + Mul<Self, Output = Self> { fn one() -> Self; fn is_one(&self) -> bool; } pub trait SemiRing: Zero + One {} pub trait Ring: SemiRing + Sub<Output = Self> + Neg<Output = Self> {} pub trait Field: Ring + Div<Output = Self> {} impl<T> SemiRing for T where T: Zero + One {} impl<T> Ring for T where T: SemiRing + Sub<Output = Self> + Neg<Output = Self> {} impl<T> Field for T where T: Ring + Div<Output = Self> {} // ---------- end trait ---------- // ---------- begin modint ---------- pub const fn pow_mod(mut r: u32, mut n: u32, m: u32) -> u32 { let mut t = 1; while n > 0 { if n & 1 == 1 { t = (t as u64 * r as u64 % m as u64) as u32; } r = (r as u64 * r as u64 % m as u64) as u32; n >>= 1; } t } pub const fn primitive_root(p: u32) -> u32 { let mut m = p - 1; let mut f = [1; 30]; let mut k = 0; let mut d = 2; while d * d <= m { if m % d == 0 { f[k] = d; k += 1; } while m % d == 0 { m /= d; } d += 1; } if m > 1 { f[k] = m; k += 1; } let mut g = 1; while g < p { let mut ok = true; let mut i = 0; while i < k { ok &= pow_mod(g, (p - 1) / f[i], p) > 1; i += 1; } if ok { break; } g += 1; } g } pub const fn is_prime(n: u32) -> bool { if n <= 1 { return false; } let mut d = 2; while d * d <= n { if n % d == 0 { return false; } d += 1; } true } #[derive(Clone, Copy, PartialEq, Eq)] pub struct ModInt<const M: u32>(u32); impl<const M: u32> ModInt<{ M }> { const REM: u32 = { let mut t = 1u32; let mut s = !M + 1; let mut n = !0u32 >> 2; while n > 0 { if n & 1 == 1 { t = t.wrapping_mul(s); } s = s.wrapping_mul(s); n >>= 1; } t }; const INI: u64 = ((1u128 << 64) % M as u128) as u64; const IS_PRIME: () = assert!(is_prime(M)); const PRIMITIVE_ROOT: u32 = primitive_root(M); const ORDER: usize = 1 << (M - 1).trailing_zeros(); const fn reduce(x: u64) -> u32 { let _ = Self::IS_PRIME; let b = (x as u32 * Self::REM) as u64; let t = x + b * M as u64; let mut c = (t >> 32) as u32; if c >= M { c -= M; } c as u32 } const fn multiply(a: u32, b: u32) -> u32 { Self::reduce(a as u64 * b as u64) } pub const fn new(v: u32) -> Self { assert!(v < M); Self(Self::reduce(v as u64 * Self::INI)) } pub const fn const_mul(&self, rhs: Self) -> Self { Self(Self::multiply(self.0, rhs.0)) } pub const fn pow(&self, mut n: u64) -> Self { let mut t = Self::new(1); let mut r = *self; while n > 0 { if n & 1 == 1 { t = t.const_mul(r); } r = r.const_mul(r); n >>= 1; } t } pub const fn inv(&self) -> Self { assert!(self.0 != 0); self.pow(M as u64 - 2) } pub const fn get(&self) -> u32 { Self::reduce(self.0 as u64) } pub const fn zero() -> Self { Self::new(0) } pub const fn one() -> Self { Self::new(1) } } impl<const M: u32> Add for ModInt<{ M }> { type Output = Self; fn add(self, rhs: Self) -> Self::Output { let mut v = self.0 + rhs.0; if v >= M { v -= M; } Self(v) } } impl<const M: u32> Sub for ModInt<{ M }> { type Output = Self; fn sub(self, rhs: Self) -> Self::Output { let mut v = self.0 - rhs.0; if self.0 < rhs.0 { v += M; } Self(v) } } impl<const M: u32> Mul for ModInt<{ M }> { type Output = Self; fn mul(self, rhs: Self) -> Self::Output { self.const_mul(rhs) } } impl<const M: u32> Div for ModInt<{ M }> { type Output = Self; fn div(self, rhs: Self) -> Self::Output { self * rhs.inv() } } impl<const M: u32> AddAssign for ModInt<{ M }> { fn add_assign(&mut self, rhs: Self) { *self = *self + rhs; } } impl<const M: u32> SubAssign for ModInt<{ M }> { fn sub_assign(&mut self, rhs: Self) { *self = *self - rhs; } } impl<const M: u32> MulAssign for ModInt<{ M }> { fn mul_assign(&mut self, rhs: Self) { *self = *self * rhs; } } impl<const M: u32> DivAssign for ModInt<{ M }> { fn div_assign(&mut self, rhs: Self) { *self = *self / rhs; } } impl<const M: u32> Neg for ModInt<{ M }> { type Output = Self; fn neg(self) -> Self::Output { if self.0 == 0 { self } else { Self(M - self.0) } } } impl<const M: u32> std::fmt::Display for ModInt<{ M }> { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.get()) } } impl<const M: u32> std::fmt::Debug for ModInt<{ M }> { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.get()) } } impl<const M: u32> std::str::FromStr for ModInt<{ M }> { type Err = std::num::ParseIntError; fn from_str(s: &str) -> Result<Self, Self::Err> { let val = s.parse::<u32>()?; Ok(ModInt::new(val)) } } impl<const M: u32> From<usize> for ModInt<{ M }> { fn from(val: usize) -> ModInt<{ M }> { ModInt::new((val % M as usize) as u32) } } // ---------- end modint ---------- // ---------- begin precalc ---------- pub struct Precalc<const MOD: u32> { fact: Vec<ModInt<MOD>>, ifact: Vec<ModInt<MOD>>, inv: Vec<ModInt<MOD>>, } impl<const MOD: u32> Precalc<MOD> { pub fn new(size: usize) -> Self { let mut fact = vec![ModInt::one(); size + 1]; let mut ifact = vec![ModInt::one(); size + 1]; let mut inv = vec![ModInt::one(); size + 1]; for i in 2..=size { fact[i] = fact[i - 1] * ModInt::from(i); } ifact[size] = fact[size].inv(); for i in (2..=size).rev() { inv[i] = ifact[i] * fact[i - 1]; ifact[i - 1] = ifact[i] * ModInt::from(i); } Self { fact, ifact, inv } } pub fn fact(&self, n: usize) -> ModInt<MOD> { self.fact[n] } pub fn ifact(&self, n: usize) -> ModInt<MOD> { self.ifact[n] } pub fn inv(&self, n: usize) -> ModInt<MOD> { assert!(0 < n); self.inv[n] } pub fn perm(&self, n: usize, k: usize) -> ModInt<MOD> { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[n - k] } pub fn binom(&self, n: usize, k: usize) -> ModInt<MOD> { if n < k { return ModInt::zero(); } self.fact[n] * self.ifact[k] * self.ifact[n - k] } } // ---------- end precalc ---------- impl<const M: u32> Zero for ModInt<{ M }> { fn zero() -> Self { Self::zero() } fn is_zero(&self) -> bool { self.0 == 0 } } impl<const M: u32> One for ModInt<{ M }> { fn one() -> Self { Self::one() } fn is_one(&self) -> bool { self.get() == 1 } } // ---------- begin array op ---------- struct NTTPrecalc<const M: u32> { sum_e: [ModInt<{ M }>; 30], sum_ie: [ModInt<{ M }>; 30], } impl<const M: u32> NTTPrecalc<{ M }> { const fn new() -> Self { let cnt2 = (M - 1).trailing_zeros() as usize; let root = ModInt::new(ModInt::<{ M }>::PRIMITIVE_ROOT); let zeta = root.pow((M - 1) as u64 >> cnt2); let mut es = [ModInt::zero(); 30]; let mut ies = [ModInt::zero(); 30]; let mut sum_e = [ModInt::zero(); 30]; let mut sum_ie = [ModInt::zero(); 30]; let mut e = zeta; let mut ie = e.inv(); let mut i = cnt2; while i >= 2 { es[i - 2] = e; ies[i - 2] = ie; e = e.const_mul(e); ie = ie.const_mul(ie); i -= 1; } let mut now = ModInt::one(); let mut inow = ModInt::one(); let mut i = 0; while i < cnt2 - 1 { sum_e[i] = es[i].const_mul(now); sum_ie[i] = ies[i].const_mul(inow); now = ies[i].const_mul(now); inow = es[i].const_mul(inow); i += 1; } Self { sum_e, sum_ie } } } struct NTTPrecalcHelper<const MOD: u32>; impl<const MOD: u32> NTTPrecalcHelper<MOD> { const A: NTTPrecalc<MOD> = NTTPrecalc::new(); } pub trait ArrayAdd { type Item; fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item>; } impl<T> ArrayAdd for [T] where T: Zero + Copy, { type Item = T; fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item> { let mut c = vec![T::zero(); self.len().max(rhs.len())]; c[..self.len()].copy_from_slice(self); c.add_assign(rhs); c } } pub trait ArrayAddAssign { type Item; fn add_assign(&mut self, rhs: &[Self::Item]); } impl<T> ArrayAddAssign for [T] where T: Add<Output = T> + Copy, { type Item = T; fn add_assign(&mut self, rhs: &[Self::Item]) { assert!(self.len() >= rhs.len()); self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x + *a); } } impl<T> ArrayAddAssign for Vec<T> where T: Zero + Add<Output = T> + Copy, { type Item = T; fn add_assign(&mut self, rhs: &[Self::Item]) { if self.len() < rhs.len() { self.resize(rhs.len(), T::zero()); } self.as_mut_slice().add_assign(rhs); } } pub trait ArraySub { type Item; fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item>; } impl<T> ArraySub for [T] where T: Zero + Sub<Output = T> + Copy, { type Item = T; fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item> { let mut c = vec![T::zero(); self.len().max(rhs.len())]; c[..self.len()].copy_from_slice(self); c.sub_assign(rhs); c } } pub trait ArraySubAssign { type Item; fn sub_assign(&mut self, rhs: &[Self::Item]); } impl<T> ArraySubAssign for [T] where T: Sub<Output = T> + Copy, { type Item = T; fn sub_assign(&mut self, rhs: &[Self::Item]) { assert!(self.len() >= rhs.len()); self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x - *a); } } impl<T> ArraySubAssign for Vec<T> where T: Zero + Sub<Output = T> + Copy, { type Item = T; fn sub_assign(&mut self, rhs: &[Self::Item]) { if self.len() < rhs.len() { self.resize(rhs.len(), T::zero()); } self.as_mut_slice().sub_assign(rhs); } } pub trait ArrayDot { type Item; fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item>; } impl<T> ArrayDot for [T] where T: Mul<Output = T> + Copy, { type Item = T; fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item> { assert!(self.len() == rhs.len()); self.iter().zip(rhs).map(|p| *p.0 * *p.1).collect() } } pub trait ArrayDotAssign { type Item; fn dot_assign(&mut self, rhs: &[Self::Item]); } impl<T> ArrayDotAssign for [T] where T: MulAssign + Copy, { type Item = T; fn dot_assign(&mut self, rhs: &[Self::Item]) { assert!(self.len() == rhs.len()); self.iter_mut().zip(rhs).for_each(|(x, a)| *x *= *a); } } pub fn bitwise_transform<T, F>(a: &mut [T], f: F) where F: Fn(&mut T, &mut T), { let size = a.len(); assert!(size > 0 && size.next_power_of_two() == size); let n = size.trailing_zeros(); for i in 0..n { let w = 1 << i; for a in a.chunks_exact_mut(2 * w) { let (l, r) = a.split_at_mut(w); for (l, r) in l.iter_mut().zip(r.iter_mut()) { f(l, r); } } } }