結果

問題 No.2786 RMQ on Grid Path
ユーザー 👑 seekworser
提出日時 2024-05-30 19:32:25
言語 Nim
(2.2.0)
結果
AC  
実行時間 763 ms / 6,000 ms
コード長 27,233 bytes
コンパイル時間 4,943 ms
コンパイル使用メモリ 96,092 KB
実行使用メモリ 91,996 KB
最終ジャッジ日時 2024-06-14 20:53:44
合計ジャッジ時間 23,230 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 35
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import macros;macro ImportExpand(s:untyped):untyped = parseStmt($s[2])
{.checks: off.}
ImportExpand "cplib/tmpl/citrus.nim" <=== "when not declared CPLIB_TMPL_CITRUS:\n const CPLIB_TMPL_CITRUS* = 1\n {.warning[UnusedImport]: off
    .}\n {.hint[XDeclaredButNotUsed]: off.}\n import os\n import algorithm\n import sequtils\n import tables\n import macros\n
    import std/math\n import sets\n import strutils\n import strformat\n import sugar\n import streams\n import deques\n import
    bitops\n import heapqueue\n import options\n import hashes\n const MODINT998244353* = 998244353\n const MODINT1000000007* =
    1000000007\n #[ include cplib/utils/infl ]#\n when not declared CPLIB_UTILS_INFL:\n const CPLIB_UTILS_INFL* = 1\n const INFi32
    * = 100100111.int32\n const INFL* = int(3300300300300300491)\n type double* = float64\n let readNext = iterator(getsChar: bool =
    false): string {.closure.} =\n while true:\n var si: string\n try: si = stdin.readLine\n except EOFError:
    yield \"\"\n for s in si.split:\n if getsChar:\n for i in 0..<s.len():\n yield
    s[i..i]\n else:\n if s.isEmptyOrWhitespace: continue\n yield s\n proc input*(t:
    typedesc[string]): string = readNext()\n proc input*(t: typedesc[char]): char = readNext(true)[0]\n proc input*(t: typedesc[int]): int =
    readNext().parseInt\n proc input*(t: typedesc[float]): float = readNext().parseFloat\n macro input*(t: typedesc, n: varargs[int]): untyped
    =\n var repStr = \"\"\n for arg in n:\n repStr &= &\"({arg.repr}).newSeqWith \"\n parseExpr(&\"{repStr}input({t}
    )\")\n macro input*(ts: varargs[auto]): untyped =\n var tupStr = \"\"\n for t in ts:\n tupStr &= &\"input({t.repr}
    ),\"\n parseExpr(&\"({tupStr})\")\n macro input*(n: int, ts: varargs[auto]): untyped =\n for typ in ts:\n if typ
    .typeKind != ntyAnything:\n error(\"Expected typedesc, got \" & typ.repr, typ)\n parseExpr(&\"({n.repr}).newSeqWith input
    ({ts.repr})\")\n proc `fmtprint`*(x: int or string or char or bool): string = return $x\n proc `fmtprint`*(x: float or float32 or float64):
    string = return &\"{x:.16f}\"\n proc `fmtprint`*[T](x: seq[T] or Deque[T] or HashSet[T] or set[T]): string = return x.toSeq.join(\" \")\n
    proc `fmtprint`*[T, N](x: array[T, N]): string = return x.toSeq.join(\" \")\n proc `fmtprint`*[T](x: HeapQueue[T]): string =\n var q =
    x\n while q.len != 0:\n result &= &\"{q.pop()}\"\n if q.len != 0: result &= \" \"\n proc `fmtprint`*[T](x:
    CountTable[T]): string =\n result = x.pairs.toSeq.mapIt(&\"{it[0]}: {it[1]}\").join(\" \")\n proc `fmtprint`*[K, V](x: Table[K, V]):
    string =\n result = x.pairs.toSeq.mapIt(&\"{it[0]}: {it[1]}\").join(\" \")\n proc print*(prop: tuple[f: File, sepc: string, endc: string
    , flush: bool], args: varargs[string, `fmtprint`]) =\n for i in 0..<len(args):\n prop.f.write(&\"{args[i]}\")\n if i
    != len(args) - 1: prop.f.write(prop.sepc) else: prop.f.write(prop.endc)\n if prop.flush: prop.f.flushFile()\n proc print*(args:
    varargs[string, `fmtprint`]) = print((f: stdout, sepc: \" \", endc: \"\\n\", flush: false), args)\n const LOCAL_DEBUG{.booldefine.} = false\n
     macro getSymbolName(x: typed): string = x.toStrLit\n macro debug*(args: varargs[untyped]): untyped =\n when LOCAL_DEBUG:\n
    result = newNimNode(nnkStmtList, args)\n template prop(e: string = \"\"): untyped = (f: stderr, sepc: \"\", endc: e, flush: true)\n
     for i, arg in args:\n if arg.kind == nnkStrLit:\n result.add(quote do: print(prop(), \"\\\"\", `arg`,
    \"\\\"\"))\n else:\n result.add(quote do: print(prop(\": \"), getSymbolName(`arg`)))\n result
    .add(quote do: print(prop(), `arg`))\n if i != args.len - 1: result.add(quote do: print(prop(), \", \"))\n else:
    result.add(quote do: print(prop(), \"\\n\"))\n else:\n return (quote do: discard)\n proc `%`*(x: SomeInteger, y: SomeInteger
    ): int =\n result = x mod y\n if y > 0 and result < 0: result += y\n if y < 0 and result > 0: result += y\n proc `//`*(x:
    SomeInteger, y: SomeInteger): int =\n result = x div y\n if y > 0 and result * y > x: result -= 1\n if y < 0 and result * y <
    x: result -= 1\n proc `^`*(x: SomeInteger, y: SomeInteger): int = x xor y\n proc `&`*(x: SomeInteger, y: SomeInteger): int = x and y\n
    proc `|`*(x: SomeInteger, y: SomeInteger): int = x or y\n proc `>>`*(x: SomeInteger, y: SomeInteger): int = x shr y\n proc `<<`*(x:
    SomeInteger, y: SomeInteger): int = x shl y\n proc `%=`*(x: var SomeInteger, y: SomeInteger): void = x = x % y\n proc `//=`*(x: var
    SomeInteger, y: SomeInteger): void = x = x // y\n proc `^=`*(x: var SomeInteger, y: SomeInteger): void = x = x ^ y\n proc `&=`*(x: var
    SomeInteger, y: SomeInteger): void = x = x & y\n proc `|=`*(x: var SomeInteger, y: SomeInteger): void = x = x | y\n proc `>>=`*(x: var
    SomeInteger, y: SomeInteger): void = x = x >> y\n proc `<<=`*(x: var SomeInteger, y: SomeInteger): void = x = x << y\n proc `[]`*(x, n: int
    ): bool = (x and (1 shl n)) != 0\n proc `[]=`*(x: var int, n: int, i: bool) =\n if i: x = x or (1 << n)\n else: (if x[n]: x = x
    xor (1 << n))\n proc pow*(a, n: int, m = INFL): int =\n var\n rev = 1\n a = a\n n = n\n while n
    > 0:\n if n % 2 != 0: rev = (rev * a) mod m\n if n > 1: a = (a * a) mod m\n n >>= 1\n return rev\n #[
    include cplib/math/isqrt ]#\n when not declared CPLIB_MATH_ISQRT:\n const CPLIB_MATH_ISQRT* = 1\n proc isqrt*(n: int): int =\n
     var x = n\n var y = (x + 1) shr 1\n while y < x:\n x = y\n y = (x + n div x) shr 1\n
     return x\n proc chmax*[T](x: var T, y: T): bool {.discardable.} = (if x < y: (x = y; return true; ) return false)\n proc chmin
    *[T](x: var T, y: T): bool {.discardable.} = (if x > y: (x = y; return true; ) return false)\n proc `max=`*[T](x: var T, y: T) = x = max(x, y
    )\n proc `min=`*[T](x: var T, y: T) = x = min(x, y)\n proc at*(x: char, a = '0'): int = int(x) - int(a)\n proc Yes*(b: bool = true): void
    = print(if b: \"Yes\" else: \"No\")\n proc No*(b: bool = true): void = Yes(not b)\n proc YES_upper*(b: bool = true): void = print(if b:
    \"YES\" else: \"NO\")\n proc NO_upper*(b: bool = true): void = Yes_upper(not b)\n const DXY* = [(0, -1), (0, 1), (-1, 0), (1, 0)]\n const
    DDXY* = [(1, -1), (1, 0), (1, 1), (0, -1), (0, 1), (-1, -1), (-1, 0), (-1, 1)]\n macro exit*(statement: untyped): untyped = (quote do:
    (`statement`; quit()))\n proc initHashSet[T](): Hashset[T] = initHashSet[T](0)\n"
ImportExpand "cplib/collections/unionfind.nim" <=== "when not declared CPLIB_COLLECTIONS_UNIONFIND:\n const CPLIB_COLLECTIONS_UNIONFIND* = 1\n
    import algorithm\n import sequtils\n type UnionFind = ref object\n count*: int\n par_or_siz: seq[int]\n proc initUnionFind
    *(N: int): UnionFind =\n result = UnionFind(count: N, par_or_siz: newSeqwith(N, -1))\n proc root*(self: UnionFind, x: int): int =\n
     if self.par_or_siz[x] < 0:\n return x\n else:\n self.par_or_siz[x] = self.root(self.par_or_siz[x])\n
    return self.par_or_siz[x]\n proc issame*(self: UnionFind, x: int, y: int): bool =\n return self.root(x) == self.root(y)\n proc unite
    *(self: UnionFind, x: int, y: int) =\n var x = self.root(x)\n var y = self.root(y)\n if(x != y):\n if(self
    .par_or_siz[x] > self.par_or_siz[y]):\n swap(x, y)\n self.par_or_siz[x] += self.par_or_siz[y]\n self
    .par_or_siz[y] = x\n self.count -= 1\n proc siz*(self: UnionFind, x: int): int =\n var x = self.root(x)\n return -self
    .par_or_siz[x]\n"
ImportExpand "cplib/graph/graph.nim" <=== "when not declared CPLIB_GRAPH_GRAPH:\n const CPLIB_GRAPH_GRAPH* = 1\n\n import sequtils\n import
    math\n type DynamicGraph*[T] = ref object of RootObj\n edges*: seq[seq[(int32, T)]]\n len*: int\n type StaticGraph*[T] = ref
    object of RootObj\n src*, dst*: seq[int32]\n cost*: seq[T]\n elist*: seq[(int32, T)]\n start*: seq[int32]\n len
    *: int\n\n type WeightedDirectedGraph*[T] = ref object of DynamicGraph[T]\n type WeightedUnDirectedGraph*[T] = ref object of
    DynamicGraph[T]\n type UnWeightedDirectedGraph* = ref object of DynamicGraph[int]\n type UnWeightedUnDirectedGraph* = ref object of
    DynamicGraph[int]\n type WeightedDirectedStaticGraph*[T] = ref object of StaticGraph[T]\n type WeightedUnDirectedStaticGraph*[T] = ref
    object of StaticGraph[T]\n type UnWeightedDirectedStaticGraph* = ref object of StaticGraph[int]\n type UnWeightedUnDirectedStaticGraph* =
    ref object of StaticGraph[int]\n\n type GraphTypes*[T] = DynamicGraph[T] or StaticGraph[T]\n type DirectedGraph* = WeightedDirectedGraph or
    UnWeightedDirectedGraph or WeightedDirectedStaticGraph or UnWeightedDirectedStaticGraph\n type UnDirectedGraph* = WeightedUnDirectedGraph or
    UnWeightedUnDirectedGraph or WeightedUnDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n type WeightedGraph*[T] =
    WeightedDirectedGraph[T] or WeightedUnDirectedGraph[T] or WeightedDirectedStaticGraph[T] or WeightedUnDirectedStaticGraph[T]\n type
    UnWeightedGraph* = UnWeightedDirectedGraph or UnWeightedUnDirectedGraph or UnWeightedDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n
    type DynamicGraphTypes* = WeightedDirectedGraph or UnWeightedDirectedGraph or WeightedUnDirectedGraph or UnWeightedUnDirectedGraph\n type
    StaticGraphTypes* = WeightedDirectedStaticGraph or UnWeightedDirectedStaticGraph or WeightedUnDirectedStaticGraph or
    UnWeightedUnDirectedStaticGraph\n\n proc add_edge_dynamic_impl*[T](g: DynamicGraph[T], u, v: int, cost: T, directed: bool) =\n g
    .edges[u].add((v.int32, cost))\n if not directed: g.edges[v].add((u.int32, cost))\n\n proc initWeightedDirectedGraph*(N: int, edgetype:
    typedesc = int): WeightedDirectedGraph[edgetype] =\n result = WeightedDirectedGraph[edgetype](edges: newSeq[seq[(int32, edgetype)]](N), len
    : N)\n proc add_edge*[T](g: var WeightedDirectedGraph[T], u, v: int, cost: T) =\n g.add_edge_dynamic_impl(u, v, cost, true)\n\n proc
    initWeightedUnDirectedGraph*(N: int, edgetype: typedesc = int): WeightedUnDirectedGraph[edgetype] =\n result =
    WeightedUnDirectedGraph[edgetype](edges: newSeq[seq[(int32, edgetype)]](N), len: N)\n proc add_edge*[T](g: var WeightedUnDirectedGraph[T], u, v
    : int, cost: T) =\n g.add_edge_dynamic_impl(u, v, cost, false)\n\n proc initUnWeightedDirectedGraph*(N: int): UnWeightedDirectedGraph
    =\n result = UnWeightedDirectedGraph(edges: newSeq[seq[(int32, int)]](N), len: N)\n proc add_edge*(g: var UnWeightedDirectedGraph, u, v:
    int) =\n g.add_edge_dynamic_impl(u, v, 1, true)\n\n proc initUnWeightedUnDirectedGraph*(N: int): UnWeightedUnDirectedGraph =\n
    result = UnWeightedUnDirectedGraph(edges: newSeq[seq[(int32, int)]](N), len: N)\n proc add_edge*(g: var UnWeightedUnDirectedGraph, u, v: int)
    =\n g.add_edge_dynamic_impl(u, v, 1, false)\n\n proc len*[T](G: WeightedGraph[T]): int = G.len\n proc len*(G: UnWeightedGraph): int =
    G.len\n\n iterator `[]`*[T](g: WeightedDirectedGraph[T] or WeightedUnDirectedGraph[T], x: int): (int, T) =\n for e in g.edges[x]: yield
    (e[0].int, e[1])\n iterator `[]`*(g: UnWeightedDirectedGraph or UnWeightedUnDirectedGraph, x: int): int =\n for e in g.edges[x]: yield
    e[0].int\n\n proc add_edge_static_impl*[T](g: StaticGraph[T], u, v: int, cost: T, directed: bool) =\n g.src.add(u.int32)\n g.dst
    .add(v.int32)\n g.cost.add(cost)\n if not directed:\n g.src.add(v.int32)\n g.dst.add(u.int32)\n g
    .cost.add(cost)\n\n proc build_impl*[T](g: StaticGraph[T]) =\n g.start = newSeqWith(g.len + 1, 0.int32)\n for i in 0..<g.src.len
    :\n g.start[g.src[i]] += 1\n g.start.cumsum\n g.elist = newSeq[(int32, T)](g.start[^1])\n for i in countdown(g.src
    .len - 1, 0):\n var u = g.src[i]\n var v = g.dst[i]\n g.start[u] -= 1\n g.elist[g.start[u]] = (v, g
    .cost[i])\n proc build*(g: StaticGraphTypes) = g.build_impl()\n\n proc initWeightedDirectedStaticGraph*(N: int, edgetype: typedesc = int,
    capacity: int = 0): WeightedDirectedStaticGraph[edgetype] =\n result = WeightedDirectedStaticGraph[edgetype](\n src:
    newSeqOfCap[int32](capacity),\n dst: newSeqOfCap[int32](capacity),\n cost: newSeqOfCap[edgetype](capacity),\n
    elist: newSeq[(int32, edgetype)](0),\n start: newSeq[int32](0),\n len: N\n )\n proc add_edge*[T](g: var
    WeightedDirectedStaticGraph[T], u, v: int, cost: T) =\n g.add_edge_static_impl(u, v, cost, true)\n\n proc
    initWeightedUnDirectedStaticGraph*(N: int, edgetype: typedesc = int, capacity: int = 0): WeightedUnDirectedStaticGraph[edgetype] =\n result
    = WeightedUnDirectedStaticGraph[edgetype](\n src: newSeqOfCap[int32](capacity*2),\n dst: newSeqOfCap[int32](capacity*2),\n
     cost: newSeqOfCap[edgetype](capacity*2),\n elist: newSeq[(int32, edgetype)](0),\n start: newSeq[int32](0),\n
     len: N\n )\n proc add_edge*[T](g: var WeightedUnDirectedStaticGraph[T], u, v: int, cost: T) =\n g.add_edge_static_impl(u, v
    , cost, false)\n\n proc initUnWeightedDirectedStaticGraph*(N: int, capacity: int = 0): UnWeightedDirectedStaticGraph =\n result =
    UnWeightedDirectedStaticGraph(\n src: newSeqOfCap[int32](capacity),\n dst: newSeqOfCap[int32](capacity),\n cost:
    newSeqOfCap[int](capacity),\n elist: newSeq[(int32, int)](0),\n start: newSeq[int32](0),\n len: N\n )\n
     proc add_edge*(g: var UnWeightedDirectedStaticGraph, u, v: int) =\n g.add_edge_static_impl(u, v, 1, true)\n\n proc
    initUnWeightedUnDirectedStaticGraph*(N: int, capacity: int = 0): UnWeightedUnDirectedStaticGraph =\n result =
    UnWeightedUnDirectedStaticGraph(\n src: newSeqOfCap[int32](capacity*2),\n dst: newSeqOfCap[int32](capacity*2),\n
    cost: newSeqOfCap[int](capacity*2),\n elist: newSeq[(int32, int)](0),\n start: newSeq[int32](0),\n len: N\n
     )\n proc add_edge*(g: var UnWeightedUnDirectedStaticGraph, u, v: int) =\n g.add_edge_static_impl(u, v, 1, false)\n\n proc
    static_graph_initialized_check*[T](g: StaticGraph[T]) = assert g.start.len > 0, \"Static Graph must be initialized before use.\"\n\n iterator
    `[]`*[T](g: WeightedDirectedStaticGraph[T] or WeightedUnDirectedStaticGraph[T], x: int): (int, T) =\n g.static_graph_initialized_check()\n
     for i in g.start[x]..<g.start[x+1]: yield (g.elist[i][0].int, g.elist[i][1])\n iterator `[]`*(g: UnWeightedDirectedStaticGraph or
    UnWeightedUnDirectedStaticGraph, x: int): int =\n g.static_graph_initialized_check()\n for i in g.start[x]..<g.start[x+1]: yield g
    .elist[i][0].int\n\n iterator to_and_cost*[T](g: DynamicGraph[T], x: int): (int, T) =\n for e in g.edges[x]: yield (e[0].int, e[1])\n
     iterator to_and_cost*[T](g: StaticGraph[T], x: int): (int, T) =\n g.static_graph_initialized_check()\n for i in g.start[x]..<g
    .start[x+1]: yield (g.elist[i][0].int, g.elist[i][1])\n"
ImportExpand "cplib/tree/heavylightdecomposition.nim" <=== "when not declared CPLIB_TREE_HLD:\n const CPLIB_TREE_HLD* = 1\n import sequtils\n
     import algorithm\n import sets\n #[ import cplib/graph/graph ]#\n # https://atcoder.jp/contests/abc337/submissions/50216964\n #
    \n type HeavyLightDecomposition* = object\n N*: int\n P*, PP*, PD*, D*, I*, rangeL*, rangeR*: seq[int]\n
    proc initHld*(g: UnWeightedGraph, root: int): HeavyLightDecomposition =\n var hld = HeavyLightDecomposition()\n var n: int = g.len\n
     hld.N = n\n hld.P = newSeqWith(n, -1)\n hld.I = newSeqWith(n, 0)\n hld.I[0] = root\n var iI = 1\n for i
    in 0..<n:\n var p = hld.I[i]\n for e in g[p]:\n if hld.P[p] != e:\n hld.I[iI] = e\n
     hld.P[e] = p\n iI += 1\n var Z = newSeqWith(n, 1)\n var nx = newSeqWith(n, -1)\n hld.PP =
    newSeqWith(n, 0)\n for i in 0..<n:\n hld.PP[i] = i\n for i in 1..<n:\n var p = hld.I[n-i]\n Z[hld
    .P[p]] += Z[p]\n if nx[hld.P[p]] == -1 or Z[nx[hld.P[p]]] < Z[p]:\n nx[hld.P[p]] = p\n for p in hld.I:\n
     if nx[p] != -1:\n hld.PP[nx[p]] = p\n hld.PD = newSeqWith(n, n)\n hld.PD[root] = 0\n hld.D = newSeqWith(n,
    0)\n for p in hld.I:\n if p != root:\n hld.PP[p] = hld.PP[hld.PP[p]]\n hld.PD[p] = min(hld.PD[hld
    .PP[p]], hld.PD[hld.P[p]]+1)\n hld.D[p] = hld.D[hld.P[p]]+1\n hld.rangeL = newSeqWith(n, 0)\n hld.rangeR = newSeqWith
    (n, 0)\n for p in hld.I:\n hld.rangeR[p] = hld.rangeL[p] + Z[p]\n var ir = hld.rangeR[p]\n for e in g[p]
    :\n if hld.P[p] != e and e != nx[p]:\n ir -= Z[e]\n hld.rangeL[e] = ir\n if nx[p]
    != -1:\n hld.rangeL[nx[p]] = hld.rangeL[p] + 1\n for i in 0..<n:\n hld.I[hld.rangeL[i]] = i\n return hld\n
     proc initHld*[T](g: WeightedGraph[T], root: int): HeavyLightDecomposition =\n var n = g.len\n var gn =
    initUnWeightedUnDirectedStaticGraph(n)\n var seen = initHashSet[(int, int)]()\n for i in 0..<n:\n for (j, _) in g[i]:\n
     if (i, j) notin seen:\n gn.add_edge(i, j)\n seen.incl((i, j))\n seen.incl
    ((j, i))\n gn.build\n return initHld(gn, root)\n proc initHld*(adj: seq[seq[int]], root: int): HeavyLightDecomposition =\n
     var n = adj.len\n var gn = initUnWeightedUnDirectedStaticGraph(n)\n var seen = initHashSet[(int, int)]()\n for i in 0..<n:\n
     for j in adj[i]:\n if (i, j) notin seen:\n gn.add_edge(i, j)\n seen.incl((i, j))\n
     seen.incl((j, i))\n gn.build\n return initHld(gn, root)\n proc numVertices*(hld: HeavyLightDecomposition): int
    = hld.N\n proc depth*(hld: HeavyLightDecomposition, p: int): int = hld.D[p]\n proc toSeq*(hld: HeavyLightDecomposition, vtx: int): int = hld
    .rangeL[vtx]\n proc toVtx*(hld: HeavyLightDecomposition, seqidx: int): int = hld.I[seqidx]\n proc toSeq2In*(hld: HeavyLightDecomposition,
    vtx: int): int = hld.rangeL[vtx] * 2 - hld.D[vtx]\n proc toSeq2Out*(hld: HeavyLightDecomposition, vtx: int): int = hld.rangeR[vtx] * 2 - hld
    .D[vtx] - 1\n proc parentOf*(hld: HeavyLightDecomposition, v: int): int = hld.P[v]\n proc heavyRootOf*(hld: HeavyLightDecomposition, v: int
    ): int = hld.PP[v]\n proc heavyChildOf*(hld: HeavyLightDecomposition, v: int): int =\n if hld.toSeq(v) == hld.N-1:\n return
    -1\n var cand = hld.toVtx(hld.toSeq(v) + 1)\n if hld.PP[v] == hld.PP[cand]:\n return cand\n -1\n proc lca*(hld:
    HeavyLightDecomposition, u: int, v: int): int =\n var (u, v) = (u, v)\n if hld.PD[u] < hld.PD[v]:\n swap(u, v)\n
    while hld.PD[u] > hld.PD[v]:\n u = hld.P[hld.PP[u]]\n while hld.PP[u] != hld.PP[v]:\n u = hld.P[hld.PP[u]]\n
     v = hld.P[hld.PP[v]]\n if hld.D[u] > hld.D[v]:\n return v\n u\n proc dist*(hld: HeavyLightDecomposition, u: int, v:
    int): int =\n hld.depth(u) + hld.depth(v) - hld.depth(hld.lca(u, v)) * 2\n proc path*(hld: HeavyLightDecomposition, r: int, c: int,
    include_root: bool, reverse_path: bool): seq[(int, int)] =\n var (r, c) = (r, c)\n var k = hld.PD[c] - hld.PD[r] + 1\n if k
    <= 0:\n return @[]\n var res = newSeqWith(k, (0, 0))\n for i in 0..<k-1:\n res[i] = (hld.rangeL[hld.PP[c]],
    hld.rangeL[c] + 1)\n c = hld.P[hld.PP[c]]\n if hld.PP[r] != hld.PP[c] or hld.D[r] > hld.D[c]:\n return @[]\n
    var root_off = int(not include_root)\n res[^1] = (hld.rangeL[r]+root_off, hld.rangeL[c]+1)\n if res[^1][0] == res[^1][1]:\n
     discard res.pop()\n k -= 1\n if reverse_path:\n for i in 0..<k:\n res[i] = (hld.N - res[i][1], hld
    .N - res[i][0])\n else:\n res.reverse()\n res\n proc subtree*(hld: HeavyLightDecomposition, p: int): (int, int) = (hld
    .rangeL[p], hld.rangeR[p])\n proc median*(hld: HeavyLightDecomposition, x: int, y: int, z: int): int =\n hld.lca(x, y) xor hld.lca(y, z)
    xor hld.lca(x, z)\n proc la*(hld: HeavyLightDecomposition, starting: int, goal: int, d: int): int =\n var (u, v, d) = (starting, goal, d
    )\n if d < 0:\n return -1\n var g = hld.lca(u, v)\n var dist0 = hld.D[u] - hld.D[g]*2 + hld.D[v]\n if dist0
    < d:\n return -1\n var p = u\n if hld.D[u] - hld.D[g] < d:\n p = v\n d = dist0 - d\n while
    hld.D[p] - hld.D[hld.PP[p]] < d:\n d -= hld.D[p] - hld.D[hld.PP[p]] + 1\n p = hld.P[hld.PP[p]]\n hld.I[hld.rangeL[p]
    - d]\n iterator children*(hld: HeavyLightDecomposition, v: int): int =\n var s = hld.rangeL[v] + 1\n while s < hld.rangeR[v]:\n
     var w = hld.toVtx(s)\n yield w\n s += hld.rangeR[w] - hld.rangeL[w]\n"
ImportExpand "cplib/collections/segtree.nim" <=== "when not declared CPLIB_COLLECTIONS_SEGTREE:\n const CPLIB_COLLECTIONS_SEGTREE* = 1\n import
    algorithm\n import strutils\n type SegmentTree*[T] = ref object\n default: T\n merge: proc(x: T, y: T): T\n arr*:
    seq[T]\n lastnode: int\n length: int\n proc initSegmentTree*[T](v: seq[T], merge: proc(x: T, y: T): T, default: T):
    SegmentTree[T] =\n ## \n ##
    vmerge\n var lastnode = 1\n while lastnode < len
    (v):\n lastnode*=2\n var arr = newSeq[T](2*lastnode)\n arr.fill(default)\n var self = SegmentTree[T](default:
    default, merge: merge, arr: arr, lastnode: lastnode, length: len(v))\n #1-indexed\n for i in 0..<len(v):\n self
    .arr[self.lastnode+i] = v[i]\n for i in countdown(lastnode-1, 1):\n self.arr[i] = self.merge(self.arr[2*i], self.arr[2*i+1])\n
     return self\n\n proc update*[T](self: SegmentTree[T], x: Natural, val: T) =\n ## xval\n assert x <
    self.length\n var x = x\n x += self.lastnode\n self.arr[x] = val\n while x > 1:\n x = x shr 1\n
    self.arr[x] = self.merge(self.arr[2*x], self.arr[2*x+1])\n proc get*[T](self: SegmentTree[T], q_left: Natural, q_right: Natural): T =\n
    ## [q_left,q_right)\n assert q_left <= q_right and 0 <= q_left and q_right <= self.length\n
    var q_left = q_left\n var q_right = q_right\n q_left += self.lastnode\n q_right += self.lastnode\n var (lres, rres) =
    (self.default, self.default)\n while q_left < q_right:\n if (q_left and 1) > 0:\n lres = self.merge(lres, self
    .arr[q_left])\n q_left += 1\n if (q_right and 1) > 0:\n q_right -= 1\n rres = self.merge
    (self.arr[q_right], rres)\n q_left = q_left shr 1\n q_right = q_right shr 1\n return self.merge(lres, rres)\n proc
    get*[T](self: SegmentTree[T], segment: HSlice[int, int]): T =\n assert segment.a <= segment.b + 1 and 0 <= segment.a and segment.b+1 <=
    self.length\n return self.get(segment.a, segment.b+1)\n proc `[]`*[T](self: SegmentTree[T], segment: HSlice[int, int]): T = self.get
    (segment)\n proc `[]`*[T](self: SegmentTree[T], index: Natural): T =\n assert index < self.length\n return self.arr[index+self
    .lastnode]\n proc `[]=`*[T](self: SegmentTree[T], index: Natural, val: T) =\n assert index < self.length\n self.update(index, val
    )\n proc get_all*[T](self: SegmentTree[T]): T =\n ## [0,len(self))O(1)\n return self.arr[1]\n proc len
    *[T](self: SegmentTree[T]): int =\n return self.length\n proc `$`*[T](self: SegmentTree[T]): string =\n var s = self.arr.len div
    2\n return self.arr[s..<s+self.len].join(\" \")\n template newSegWith*(V, merge, default: untyped): untyped =\n initSegmentTree(V
    , proc (l{.inject.}, r{.inject.}: typeof(default)): typeof(default) = merge, default)\n\n"
var h, w = input(int)
var a = input(int, h, w)
var g = initUnWeightedUnDirectedStaticGraph(h*w)
var edges = newSeq[(int, int, int)]()
for i in 0..<h:
for j in 0..<w:
for (dx, dy) in DXY:
if i+dx notin 0..<h or j+dy notin 0..<w: continue
edges.add((max(a[i][j], a[i+dx][j+dy]), i*w+j, (i+dx)*w+(j+dy)))
edges.sort
var uf = initUnionFind(h*w)
for (cost, u, v) in edges:
if uf.issame(u, v): continue
uf.unite(u, v)
g.add_edge(u, v)
g.build
var hld = g.initHld(0)
proc init(): auto =
var arr = newSeqWith(h*w, -INFL)
for i in 0..<h*w:
var u = hld.toVtx(i)
if hld.P[u] == -1: continue
var v = hld.P[u]
arr[i] = max(a[u//w][u%w], a[v//w][v%w])
return newSegWith(arr, max(l, r), -INFL)
var seg = init()
var q = input(int)
for _ in 0..<q:
var rs, cs, rt, ct = input(int) - 1
var u = rs*w + cs
var v = rt*w + ct
var lca = hld.lca(u, v)
var ans = -INFL
for (l, r) in hld.path(lca, u, false, false): ans.max = seg[l..<r]
for (l, r) in hld.path(lca, v, false, false): ans.max = seg[l..<r]
print(ans)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0