結果

問題 No.2770 Coupon Optimization
ユーザー ぷらぷら
提出日時 2024-05-31 21:43:54
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 6,336 bytes
コンパイル時間 1,664 ms
コンパイル使用メモリ 150,088 KB
実行使用メモリ 47,448 KB
最終ジャッジ日時 2024-05-31 21:43:59
合計ジャッジ時間 5,130 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 WA -
testcase_04 WA -
testcase_05 AC 40 ms
14,928 KB
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <string.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cfloat>
#include <climits>
#include <cmath>
#include <complex>
#include <ctime>
#include <deque>
#include <fstream>
#include <functional>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <list>
#include <map>
#include <memory>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;

using ll = long long;
using pii = pair<int,int>;
using pll = pair<ll,ll>;
template <typename T> using vc = vector<T>;
template <typename T> using vvc = vector<vector<T>>;
template <typename T> using vvvc = vector<vector<vector<T>>>;
template<class T> using pq = priority_queue<T,vector<T>,greater<T>>;
template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); }
template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); }

int dx4[] = {1,0,-1,0};
int dy4[] = {0,1,0,-1};

#define overload5(a, b, c, d, e, name, ...) name
#define overload4(a, b, c, d, name, ...) name
#define REP0(n) for(ll jidlsjf = 0; jidlsjf < n; ++jidlsjf)
#define REP1(i, n) for(ll i = 0; i < (n); ++i)
#define REP2(i, a, b) for(ll i = (a); i < (b); ++i)
#define REP3(i, a, b, c) for(ll i = (a); i < (b); i += (c))
#define rep(...) overload4(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__)
#define per0(n) for(int jidlsjf = 0; jidlsjf < (n); ++jidlsjf)
#define per1(i, n) for(ll i = (n)-1; i >= 0; --i)
#define per2(i, a, b) for(ll i = (a)-1; i >= b; --i)
#define per3(i, a, b, c) for(ll i = (a)-1; i >= (b); i -= (c))
#define per(...) overload4(__VA_ARGS__, per3, per2, per1, per0)(__VA_ARGS__)
#define setbits(j, n) for(ll iiiii = (n), j = lowbit(iiiii); iiiii; iiiii ^= 1 << j, j = lowbit(iiiii))
#define perm(v) for(bool permrepflag = true; (permrepflag ? exchange(permrepflag, false) : next_permutation(all(v)));)
#define fi first
#define se second
#define pb push_back
#define ppb pop_back
#define ppf pop_front
#define drop(s) cout << #s << endl, exit(0)
#define si(c) (int)(c).size()
#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define lbg(c, x) distance((c).begin(), lower_bound(all(c), (x), greater{}))
#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define ubg(c, x) distance((c).begin(), upper_bound(all(c), (x), greater{}))
#define rng(v, l, r) v.begin() + (l), v.begin() + (r)
#define all(c) c.begin(), c.end()
#define rall(c) c.rbegin(), c.rend()
#define SORT(v) sort(all(v))
#define REV(v) reverse(all(v))
#define UNIQUE(x) SORT(x), x.erase(unique(all(x)), x.end())
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define overload2(_1, _2, name, ...) name
#define vec(type, name, ...) vector<type> name(__VA_ARGS__)
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))

namespace FastFourierTransform {
using real = double;

struct C {
    real x, y;
    
    C() : x(0), y(0) {}
    
    C(real x, real y) : x(x), y(y) {}
    
    inline C operator+(const C &c) const { return C(x + c.x, y + c.y); }
    
    inline C operator-(const C &c) const { return C(x - c.x, y - c.y); }
    
    inline C operator*(const C &c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); }
    
    inline C conj() const { return C(x, -y); }
};

const real PI = acosl(-1);
int base = 1;
vector< C > rts = { {0, 0},
    {1, 0} };
vector< int > rev = {0, 1};


void ensure_base(int nbase) {
    if(nbase <= base) return;
    rev.resize(1 << nbase);
    rts.resize(1 << nbase);
    for(int i = 0; i < (1 << nbase); i++) {
        rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
    }
    while(base < nbase) {
        real angle = PI * 2.0 / (1 << (base + 1));
        for(int i = 1 << (base - 1); i < (1 << base); i++) {
            rts[i << 1] = rts[i];
            real angle_i = angle * (2 * i + 1 - (1 << base));
            rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));
        }
        ++base;
    }
}

void fft(vector< C > &a, int n) {
    assert((n & (n - 1)) == 0);
    int zeros = __builtin_ctz(n);
    ensure_base(zeros);
    int shift = base - zeros;
    for(int i = 0; i < n; i++) {
        if(i < (rev[i] >> shift)) {
            swap(a[i], a[rev[i] >> shift]);
        }
    }
    for(int k = 1; k < n; k <<= 1) {
        for(int i = 0; i < n; i += 2 * k) {
            for(int j = 0; j < k; j++) {
                C z = a[i + j + k] * rts[j + k];
                a[i + j + k] = a[i + j] - z;
                a[i + j] = a[i + j] + z;
            }
        }
    }
}

vector< long long > multiply(const vector< int > &a, const vector< int > &b) {
    int need = (int) a.size() + (int) b.size() - 1;
    int nbase = 1;
    while((1 << nbase) < need) nbase++;
    ensure_base(nbase);
    int sz = 1 << nbase;
    vector< C > fa(sz);
    for(int i = 0; i < sz; i++) {
        int x = (i < (int) a.size() ? a[i] : 0);
        int y = (i < (int) b.size() ? b[i] : 0);
        fa[i] = C(x, y);
    }
    fft(fa, sz);
    C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);
    for(int i = 0; i <= (sz >> 1); i++) {
        int j = (sz - i) & (sz - 1);
        C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;
        fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;
        fa[i] = z;
    }
    for(int i = 0; i < (sz >> 1); i++) {
        C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;
        C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i];
        fa[i] = A0 + A1 * s;
    }
    fft(fa, sz >> 1);
    vector< long long > ret(need);
    for(int i = 0; i < need; i++) {
        ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x);
    }
    return ret;
}
};

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int n,m;
    cin >> n >> m;
    vc<int>a(n),b(m);
    rep(i,n) {
        cin >> a[i];
        a[i] /= 100;
    }
    SORT(a);
    rep(i,m) {
        cin >> b[i];
        b[i] = 100-b[i];
    }
    rep(i,n) {
        b.pb(100);
    }
    SORT(b);
    vc<ll>ans = FastFourierTransform::multiply(a,b);
    rep(i,n) {
        cout << ans[i] << "\n";
    }
}
0