結果
問題 | No.2770 Coupon Optimization |
ユーザー |
👑 |
提出日時 | 2024-05-31 21:49:51 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 196 ms / 3,000 ms |
コード長 | 21,379 bytes |
コンパイル時間 | 5,118 ms |
コンパイル使用メモリ | 184,500 KB |
実行使用メモリ | 20,416 KB |
最終ジャッジ日時 | 2024-12-20 23:10:07 |
合計ジャッジ時間 | 8,806 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 16 |
ソースコード
#include <cassert>#include <cmath>#include <cstdint>#include <cstdio>#include <cstdlib>#include <cstring>#include <algorithm>#include <bitset>#include <complex>#include <deque>#include <functional>#include <iostream>#include <limits>#include <map>#include <numeric>#include <queue>#include <random>#include <set>#include <sstream>#include <string>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>using namespace std;using Int = long long;template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i>= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }#define COLOR(s) ("\x1b[" s "m")////////////////////////////////////////////////////////////////////////////////template <unsigned M_> struct ModInt {static constexpr unsigned M = M_;unsigned x;constexpr ModInt() : x(0U) {}constexpr ModInt(unsigned x_) : x(x_ % M) {}constexpr ModInt(unsigned long long x_) : x(x_ % M) {}constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }ModInt pow(long long e) const {if (e < 0) return inv().pow(-e);ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;}ModInt inv() const {unsigned a = M, b = x; int y = 0, z = 1;for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }assert(a == 1U); return ModInt(y);}ModInt operator+() const { return *this; }ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }explicit operator bool() const { return x; }bool operator==(const ModInt &a) const { return (x == a.x); }bool operator!=(const ModInt &a) const { return (x != a.x); }friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }};////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// M: prime, G: primitive root, 2^K | M - 1template <unsigned M_, unsigned G_, int K_> struct Fft {static_assert(2U <= M_, "Fft: 2 <= M must hold.");static_assert(M_ < 1U << 30, "Fft: M < 2^30 must hold.");static_assert(1 <= K_, "Fft: 1 <= K must hold.");static_assert(K_ < 30, "Fft: K < 30 must hold.");static_assert(!((M_ - 1U) & ((1U << K_) - 1U)), "Fft: 2^K | M - 1 must hold.");static constexpr unsigned M = M_;static constexpr unsigned M2 = 2U * M_;static constexpr unsigned G = G_;static constexpr int K = K_;ModInt<M> FFT_ROOTS[K + 1], INV_FFT_ROOTS[K + 1];ModInt<M> FFT_RATIOS[K], INV_FFT_RATIOS[K];Fft() {const ModInt<M> g(G);for (int k = 0; k <= K; ++k) {FFT_ROOTS[k] = g.pow((M - 1U) >> k);INV_FFT_ROOTS[k] = FFT_ROOTS[k].inv();}for (int k = 0; k <= K - 2; ++k) {FFT_RATIOS[k] = -g.pow(3U * ((M - 1U) >> (k + 2)));INV_FFT_RATIOS[k] = FFT_RATIOS[k].inv();}assert(FFT_ROOTS[1] == M - 1U);}// as[rev(i)] <- \sum_j \zeta^(ij) as[j]void fft(ModInt<M> *as, int n) const {assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << K);int m = n;if (m >>= 1) {for (int i = 0; i < m; ++i) {const unsigned x = as[i + m].x; // < Mas[i + m].x = as[i].x + M - x; // < 2 Mas[i].x += x; // < 2 M}}if (m >>= 1) {ModInt<M> prod = 1U;for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {for (int i = i0; i < i0 + m; ++i) {const unsigned x = (prod * as[i + m]).x; // < Mas[i + m].x = as[i].x + M - x; // < 3 Mas[i].x += x; // < 3 M}prod *= FFT_RATIOS[__builtin_ctz(++h)];}}for (; m; ) {if (m >>= 1) {ModInt<M> prod = 1U;for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {for (int i = i0; i < i0 + m; ++i) {const unsigned x = (prod * as[i + m]).x; // < Mas[i + m].x = as[i].x + M - x; // < 4 Mas[i].x += x; // < 4 M}prod *= FFT_RATIOS[__builtin_ctz(++h)];}}if (m >>= 1) {ModInt<M> prod = 1U;for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {for (int i = i0; i < i0 + m; ++i) {const unsigned x = (prod * as[i + m]).x; // < Mas[i].x = (as[i].x >= M2) ? (as[i].x - M2) : as[i].x; // < 2 Mas[i + m].x = as[i].x + M - x; // < 3 Mas[i].x += x; // < 3 M}prod *= FFT_RATIOS[__builtin_ctz(++h)];}}}for (int i = 0; i < n; ++i) {as[i].x = (as[i].x >= M2) ? (as[i].x - M2) : as[i].x; // < 2 Mas[i].x = (as[i].x >= M) ? (as[i].x - M) : as[i].x; // < M}}// as[i] <- (1/n) \sum_j \zeta^(-ij) as[rev(j)]void invFft(ModInt<M> *as, int n) const {assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << K);int m = 1;if (m < n >> 1) {ModInt<M> prod = 1U;for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {for (int i = i0; i < i0 + m; ++i) {const unsigned long long y = as[i].x + M - as[i + m].x; // < 2 Mas[i].x += as[i + m].x; // < 2 Mas[i + m].x = (prod.x * y) % M; // < M}prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];}m <<= 1;}for (; m < n >> 1; m <<= 1) {ModInt<M> prod = 1U;for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {for (int i = i0; i < i0 + (m >> 1); ++i) {const unsigned long long y = as[i].x + M2 - as[i + m].x; // < 4 Mas[i].x += as[i + m].x; // < 4 Mas[i].x = (as[i].x >= M2) ? (as[i].x - M2) : as[i].x; // < 2 Mas[i + m].x = (prod.x * y) % M; // < M}for (int i = i0 + (m >> 1); i < i0 + m; ++i) {const unsigned long long y = as[i].x + M - as[i + m].x; // < 2 Mas[i].x += as[i + m].x; // < 2 Mas[i + m].x = (prod.x * y) % M; // < M}prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];}}if (m < n) {for (int i = 0; i < m; ++i) {const unsigned y = as[i].x + M2 - as[i + m].x; // < 4 Mas[i].x += as[i + m].x; // < 4 Mas[i + m].x = y; // < 4 M}}const ModInt<M> invN = ModInt<M>(n).inv();for (int i = 0; i < n; ++i) {as[i] *= invN;}}void fft(vector<ModInt<M>> &as) const {fft(as.data(), as.size());}void invFft(vector<ModInt<M>> &as) const {invFft(as.data(), as.size());}vector<ModInt<M>> convolve(vector<ModInt<M>> as, vector<ModInt<M>> bs) const {if (as.empty() || bs.empty()) return {};const int len = as.size() + bs.size() - 1;int n = 1;for (; n < len; n <<= 1) {}as.resize(n); fft(as);bs.resize(n); fft(bs);for (int i = 0; i < n; ++i) as[i] *= bs[i];invFft(as);as.resize(len);return as;}vector<ModInt<M>> square(vector<ModInt<M>> as) const {if (as.empty()) return {};const int len = as.size() + as.size() - 1;int n = 1;for (; n < len; n <<= 1) {}as.resize(n); fft(as);for (int i = 0; i < n; ++i) as[i] *= as[i];invFft(as);as.resize(len);return as;}};// M0 M1 M2 = 789204840662082423367925761 (> 7.892 * 10^26, > 2^89)// M0 M3 M4 M5 M6 = 797766583174034668024539679147517452591562753 (> 7.977 * 10^44, > 2^149)const Fft<998244353U, 3U, 23> FFT0;const Fft<897581057U, 3U, 23> FFT1;const Fft<880803841U, 26U, 23> FFT2;const Fft<985661441U, 3U, 22> FFT3;const Fft<943718401U, 7U, 22> FFT4;const Fft<935329793U, 3U, 22> FFT5;const Fft<918552577U, 5U, 22> FFT6;// T = unsigned, unsigned long long, ModInt<M>template <class T, unsigned M0, unsigned M1, unsigned M2>T garner(ModInt<M0> a0, ModInt<M1> a1, ModInt<M2> a2) {static const ModInt<M1> INV_M0_M1 = ModInt<M1>(M0).inv();static const ModInt<M2> INV_M0M1_M2 = (ModInt<M2>(M0) * M1).inv();const ModInt<M1> b1 = INV_M0_M1 * (a1 - a0.x);const ModInt<M2> b2 = INV_M0M1_M2 * (a2 - (ModInt<M2>(b1.x) * M0 + a0.x));return (T(b2.x) * M1 + b1.x) * M0 + a0.x;}template <class T, unsigned M0, unsigned M1, unsigned M2, unsigned M3, unsigned M4>T garner(ModInt<M0> a0, ModInt<M1> a1, ModInt<M2> a2, ModInt<M3> a3, ModInt<M4> a4) {static const ModInt<M1> INV_M0_M1 = ModInt<M1>(M0).inv();static const ModInt<M2> INV_M0M1_M2 = (ModInt<M2>(M0) * M1).inv();static const ModInt<M3> INV_M0M1M2_M3 = (ModInt<M3>(M0) * M1 * M2).inv();static const ModInt<M4> INV_M0M1M2M3_M4 = (ModInt<M4>(M0) * M1 * M2 * M3).inv();const ModInt<M1> b1 = INV_M0_M1 * (a1 - a0.x);const ModInt<M2> b2 = INV_M0M1_M2 * (a2 - (ModInt<M2>(b1.x) * M0 + a0.x));const ModInt<M3> b3 = INV_M0M1M2_M3 * (a3 - ((ModInt<M3>(b2.x) * M1 + b1.x) * M0 + a0.x));const ModInt<M4> b4 = INV_M0M1M2M3_M4 * (a4 - (((ModInt<M4>(b3.x) * M2 + b2.x) * M1 + b1.x) * M0 + a0.x));return (((T(b4.x) * M3 + b3.x) * M2 + b2.x) * M1 + b1.x) * M0 + a0.x;}template <unsigned M> vector<ModInt<M>> convolve(const vector<ModInt<M>> &as, const vector<ModInt<M>> &bs) {static constexpr unsigned M0 = decltype(FFT0)::M;static constexpr unsigned M1 = decltype(FFT1)::M;static constexpr unsigned M2 = decltype(FFT2)::M;if (as.empty() || bs.empty()) return {};const int asLen = as.size(), bsLen = bs.size();vector<ModInt<M0>> as0(asLen), bs0(bsLen);for (int i = 0; i < asLen; ++i) as0[i] = as[i].x;for (int i = 0; i < bsLen; ++i) bs0[i] = bs[i].x;const vector<ModInt<M0>> cs0 = FFT0.convolve(as0, bs0);vector<ModInt<M1>> as1(asLen), bs1(bsLen);for (int i = 0; i < asLen; ++i) as1[i] = as[i].x;for (int i = 0; i < bsLen; ++i) bs1[i] = bs[i].x;const vector<ModInt<M1>> cs1 = FFT1.convolve(as1, bs1);vector<ModInt<M2>> as2(asLen), bs2(bsLen);for (int i = 0; i < asLen; ++i) as2[i] = as[i].x;for (int i = 0; i < bsLen; ++i) bs2[i] = bs[i].x;const vector<ModInt<M2>> cs2 = FFT2.convolve(as2, bs2);vector<ModInt<M>> cs(asLen + bsLen - 1);for (int i = 0; i < asLen + bsLen - 1; ++i) {cs[i] = garner<ModInt<M>>(cs0[i], cs1[i], cs2[i]);}return cs;}template <unsigned M> vector<ModInt<M>> square(const vector<ModInt<M>> &as) {static constexpr unsigned M0 = decltype(FFT0)::M;static constexpr unsigned M1 = decltype(FFT1)::M;static constexpr unsigned M2 = decltype(FFT2)::M;if (as.empty()) return {};const int asLen = as.size();vector<ModInt<M0>> as0(asLen);for (int i = 0; i < asLen; ++i) as0[i] = as[i].x;const vector<ModInt<M0>> cs0 = FFT0.square(as0);vector<ModInt<M1>> as1(asLen);for (int i = 0; i < asLen; ++i) as1[i] = as[i].x;const vector<ModInt<M1>> cs1 = FFT1.square(as1);vector<ModInt<M2>> as2(asLen);for (int i = 0; i < asLen; ++i) as2[i] = as[i].x;const vector<ModInt<M2>> cs2 = FFT2.square(as2);vector<ModInt<M>> cs(asLen + asLen - 1);for (int i = 0; i < asLen + asLen - 1; ++i) {cs[i] = garner<ModInt<M>>(cs0[i], cs1[i], cs2[i]);}return cs;}// mod 2^64vector<unsigned long long> convolve(const vector<unsigned long long> &as, const vector<unsigned long long> &bs) {static constexpr unsigned M0 = decltype(FFT0)::M;static constexpr unsigned M3 = decltype(FFT3)::M;static constexpr unsigned M4 = decltype(FFT4)::M;static constexpr unsigned M5 = decltype(FFT5)::M;static constexpr unsigned M6 = decltype(FFT6)::M;if (as.empty() || bs.empty()) return {};const int asLen = as.size(), bsLen = bs.size();vector<ModInt<M0>> as0(asLen), bs0(bsLen);for (int i = 0; i < asLen; ++i) as0[i] = as[i];for (int i = 0; i < bsLen; ++i) bs0[i] = bs[i];const vector<ModInt<M0>> cs0 = FFT0.convolve(as0, bs0);vector<ModInt<M3>> as3(asLen), bs3(bsLen);for (int i = 0; i < asLen; ++i) as3[i] = as[i];for (int i = 0; i < bsLen; ++i) bs3[i] = bs[i];const vector<ModInt<M3>> cs3 = FFT3.convolve(as3, bs3);vector<ModInt<M4>> as4(asLen), bs4(bsLen);for (int i = 0; i < asLen; ++i) as4[i] = as[i];for (int i = 0; i < bsLen; ++i) bs4[i] = bs[i];const vector<ModInt<M4>> cs4 = FFT4.convolve(as4, bs4);vector<ModInt<M5>> as5(asLen), bs5(bsLen);for (int i = 0; i < asLen; ++i) as5[i] = as[i];for (int i = 0; i < bsLen; ++i) bs5[i] = bs[i];const vector<ModInt<M5>> cs5 = FFT5.convolve(as5, bs5);vector<ModInt<M6>> as6(asLen), bs6(bsLen);for (int i = 0; i < asLen; ++i) as6[i] = as[i];for (int i = 0; i < bsLen; ++i) bs6[i] = bs[i];const vector<ModInt<M6>> cs6 = FFT6.convolve(as6, bs6);vector<unsigned long long> cs(asLen + bsLen - 1);for (int i = 0; i < asLen + bsLen - 1; ++i) {cs[i] = garner<unsigned long long>(cs0[i], cs3[i], cs4[i], cs5[i], cs6[i]);}return cs;}vector<unsigned long long> square(const vector<unsigned long long> &as) {static constexpr unsigned M0 = decltype(FFT0)::M;static constexpr unsigned M3 = decltype(FFT3)::M;static constexpr unsigned M4 = decltype(FFT4)::M;static constexpr unsigned M5 = decltype(FFT5)::M;static constexpr unsigned M6 = decltype(FFT6)::M;if (as.empty()) return {};const int asLen = as.size();vector<ModInt<M0>> as0(asLen);for (int i = 0; i < asLen; ++i) as0[i] = as[i];const vector<ModInt<M0>> cs0 = FFT0.square(as0);vector<ModInt<M3>> as3(asLen);for (int i = 0; i < asLen; ++i) as3[i] = as[i];const vector<ModInt<M3>> cs3 = FFT3.square(as3);vector<ModInt<M4>> as4(asLen);for (int i = 0; i < asLen; ++i) as4[i] = as[i];const vector<ModInt<M4>> cs4 = FFT4.square(as4);vector<ModInt<M5>> as5(asLen);for (int i = 0; i < asLen; ++i) as5[i] = as[i];const vector<ModInt<M5>> cs5 = FFT5.square(as5);vector<ModInt<M6>> as6(asLen);for (int i = 0; i < asLen; ++i) as6[i] = as[i];const vector<ModInt<M6>> cs6 = FFT6.square(as6);vector<unsigned long long> cs(asLen + asLen - 1);for (int i = 0; i < asLen + asLen - 1; ++i) {cs[i] = garner<unsigned long long>(cs0[i], cs3[i], cs4[i], cs5[i], cs6[i]);}return cs;}// Results must be in [-448002610255888384, 448002611254132736].// (> 4.480 * 10^17, > 2^58)vector<long long> convolveSmall2(const vector<long long> &as, const vector<long long> &bs) {static constexpr unsigned M0 = decltype(FFT0)::M;static constexpr unsigned M1 = decltype(FFT1)::M;static const ModInt<M1> INV_M0_M1 = ModInt<M1>(M0).inv();if (as.empty() || bs.empty()) return {};const int asLen = as.size(), bsLen = bs.size();vector<ModInt<M0>> as0(asLen), bs0(bsLen);for (int i = 0; i < asLen; ++i) as0[i] = as[i];for (int i = 0; i < bsLen; ++i) bs0[i] = bs[i];const vector<ModInt<M0>> cs0 = FFT0.convolve(as0, bs0);vector<ModInt<M1>> as1(asLen), bs1(bsLen);for (int i = 0; i < asLen; ++i) as1[i] = as[i];for (int i = 0; i < bsLen; ++i) bs1[i] = bs[i];const vector<ModInt<M1>> cs1 = FFT1.convolve(as1, bs1);vector<long long> cs(asLen + bsLen - 1);for (int i = 0; i < asLen + bsLen - 1; ++i) {const ModInt<M1> d1 = INV_M0_M1 * (cs1[i] - cs0[i].x);cs[i] = (d1.x > M1 - d1.x)? (-1ULL - (static_cast<unsigned long long>(M1 - 1U - d1.x) * M0 + (M0 - 1U - cs0[i].x))): (static_cast<unsigned long long>(d1.x) * M0 + cs0[i].x);}return cs;}vector<long long> squareSmall2(const vector<long long> &as) {static constexpr unsigned M0 = decltype(FFT0)::M;static constexpr unsigned M1 = decltype(FFT1)::M;static const ModInt<M1> INV_M0_M1 = ModInt<M1>(M0).inv();if (as.empty()) return {};const int asLen = as.size();vector<ModInt<M0>> as0(asLen);for (int i = 0; i < asLen; ++i) as0[i] = as[i];const vector<ModInt<M0>> cs0 = FFT0.square(as0);vector<ModInt<M1>> as1(asLen);for (int i = 0; i < asLen; ++i) as1[i] = as[i];const vector<ModInt<M1>> cs1 = FFT1.square(as1);vector<long long> cs(asLen + asLen - 1);for (int i = 0; i < asLen + asLen - 1; ++i) {const ModInt<M1> d1 = INV_M0_M1 * (cs1[i] - cs0[i].x);cs[i] = (d1.x > M1 - d1.x)? (-1ULL - (static_cast<unsigned long long>(M1 - 1U - d1.x) * M0 + (M0 - 1U - cs0[i].x))): (static_cast<unsigned long long>(d1.x) * M0 + cs0[i].x);}return cs;}// Results must be in [-2^63, 2^63).vector<long long> convolveSmall3(const vector<long long> &as, const vector<long long> &bs) {static constexpr unsigned M0 = decltype(FFT0)::M;static constexpr unsigned M1 = decltype(FFT1)::M;static constexpr unsigned M2 = decltype(FFT2)::M;static const ModInt<M1> INV_M0_M1 = ModInt<M1>(M0).inv();static const ModInt<M2> INV_M0M1_M2 = (ModInt<M2>(M0) * M1).inv();if (as.empty() || bs.empty()) return {};const int asLen = as.size(), bsLen = bs.size();vector<ModInt<M0>> as0(asLen), bs0(bsLen);for (int i = 0; i < asLen; ++i) as0[i] = as[i];for (int i = 0; i < bsLen; ++i) bs0[i] = bs[i];const vector<ModInt<M0>> cs0 = FFT0.convolve(as0, bs0);vector<ModInt<M1>> as1(asLen), bs1(bsLen);for (int i = 0; i < asLen; ++i) as1[i] = as[i];for (int i = 0; i < bsLen; ++i) bs1[i] = bs[i];const vector<ModInt<M1>> cs1 = FFT1.convolve(as1, bs1);vector<ModInt<M2>> as2(asLen), bs2(bsLen);for (int i = 0; i < asLen; ++i) as2[i] = as[i];for (int i = 0; i < bsLen; ++i) bs2[i] = bs[i];const vector<ModInt<M2>> cs2 = FFT2.convolve(as2, bs2);vector<long long> cs(asLen + bsLen - 1);for (int i = 0; i < asLen + bsLen - 1; ++i) {const ModInt<M1> d1 = INV_M0_M1 * (cs1[i] - cs0[i].x);const ModInt<M2> d2 = INV_M0M1_M2 * (cs2[i] - (ModInt<M2>(d1.x) * M0 + cs0[i].x));cs[i] = (d2.x > M2 - d2.x)? (-1ULL - ((static_cast<unsigned long long>(M2 - 1U - d2.x) * M1 + (M1 - 1U - d1.x)) * M0 + (M0 - 1U - cs0[i].x))): ((static_cast<unsigned long long>(d2.x) * M1 + d1.x) * M0 + cs0[i].x);}return cs;}vector<long long> squareSmall3(const vector<long long> &as) {static constexpr unsigned M0 = decltype(FFT0)::M;static constexpr unsigned M1 = decltype(FFT1)::M;static constexpr unsigned M2 = decltype(FFT2)::M;static const ModInt<M1> INV_M0_M1 = ModInt<M1>(M0).inv();static const ModInt<M2> INV_M0M1_M2 = (ModInt<M2>(M0) * M1).inv();if (as.empty()) return {};const int asLen = as.size();vector<ModInt<M0>> as0(asLen);for (int i = 0; i < asLen; ++i) as0[i] = as[i];const vector<ModInt<M0>> cs0 = FFT0.square(as0);vector<ModInt<M1>> as1(asLen);for (int i = 0; i < asLen; ++i) as1[i] = as[i];const vector<ModInt<M1>> cs1 = FFT1.square(as1);vector<ModInt<M2>> as2(asLen);for (int i = 0; i < asLen; ++i) as2[i] = as[i];const vector<ModInt<M2>> cs2 = FFT2.square(as2);vector<long long> cs(asLen + asLen - 1);for (int i = 0; i < asLen + asLen - 1; ++i) {const ModInt<M1> d1 = INV_M0_M1 * (cs1[i] - cs0[i].x);const ModInt<M2> d2 = INV_M0M1_M2 * (cs2[i] - (ModInt<M2>(d1.x) * M0 + cs0[i].x));cs[i] = (d2.x > M2 - d2.x)? (-1ULL - ((static_cast<unsigned long long>(M2 - 1U - d2.x) * M1 + (M1 - 1U - d1.x)) * M0 + (M0 - 1U - cs0[i].x))): ((static_cast<unsigned long long>(d2.x) * M1 + d1.x) * M0 + cs0[i].x);}return cs;}////////////////////////////////////////////////////////////////////////////////int N, M;vector<Int> A, B;int main() {for (; ~scanf("%d%d", &N, &M); ) {A.resize(N);for (int i = 0; i < N; ++i) {scanf("%lld", &A[i]);A[i] /= 100;}B.resize(M);for (int i = 0; i < M; ++i) {scanf("%lld", &B[i]);B[i] = 100 - B[i];}sort(A.begin(), A.end());sort(B.begin(), B.end());B.resize(N, 100);const auto prod = convolveSmall2(A, B);for (int i = 0; i < N; ++i) {printf("%lld\n", prod[i]);}}return 0;}