結果
問題 | No.2772 Appearing Even Times |
ユーザー | navel_tos |
提出日時 | 2024-05-31 22:38:37 |
言語 | PyPy3 (7.3.15) |
結果 |
MLE
|
実行時間 | - |
コード長 | 1,791 bytes |
コンパイル時間 | 240 ms |
コンパイル使用メモリ | 81,848 KB |
実行使用メモリ | 643,008 KB |
最終ジャッジ日時 | 2024-12-21 00:25:13 |
合計ジャッジ時間 | 62,908 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 122 ms
83,684 KB |
testcase_01 | MLE | - |
testcase_02 | AC | 181 ms
82,704 KB |
testcase_03 | MLE | - |
testcase_04 | MLE | - |
testcase_05 | AC | 133 ms
84,108 KB |
testcase_06 | MLE | - |
testcase_07 | AC | 44 ms
59,800 KB |
testcase_08 | MLE | - |
testcase_09 | MLE | - |
testcase_10 | MLE | - |
testcase_11 | MLE | - |
testcase_12 | TLE | - |
testcase_13 | MLE | - |
testcase_14 | TLE | - |
testcase_15 | MLE | - |
testcase_16 | TLE | - |
testcase_17 | MLE | - |
testcase_18 | TLE | - |
testcase_19 | MLE | - |
testcase_20 | MLE | - |
testcase_21 | MLE | - |
ソースコード
#yukicoder 2772 Appearing Even Times N = input() MOD = 998244353 def brute(N: str): n = int(N) ans = 0 for i in range(1, n + 1): i = str(i) C = [0] * 10 for j in i: C[ int(j) ] ^= 1 if not any(C): ans += 1 return ans def solve(N: str): #DP[i][f][g][S]: Nの下からi桁目まで見たとき、0から9までの数字の出現回数フラグがS、 # f = 以下フラグ # g = 0, 1, 2: leading zerosがない、0が奇数個/偶数個つながる 状態数 DP = [[[[0] * (1 << 10) for g in range(3)] for f in range(2)] for i in range(len(N))] has_bit = lambda S, x: S >> x & 1 N = N[::-1] #1桁目を埋める DP[0][1][1][1] = 1 now = int(N[0]) for k in range(1, 10): DP[0][k <= now][0][1 << k] += 1 #2桁目以降を決定する for i, now in enumerate(N[1:], start = 1): now = int(now) #0をつなげる場合 for S in range(1 << 10): for f in range(2): nf = (now > 0) | f T = S ^ 1 DP[i][nf][1][T] += DP[i - 1][f][0][S] + DP[i - 1][f][2][S] DP[i][nf][1][T] %= MOD DP[i][nf][2][T] += DP[i - 1][f][1][S] DP[i][nf][2][T] %= MOD #1 - 9をつなげる場合 for S in range(1 << 10): for k in range(1, 10): T = S ^ (1 << k) for f in range(2): nf = (now > k) | ((now == k) & f) DP[i][nf][0][T] += sum(DP[i - 1][f][g][S] for g in range(3)) DP[i][nf][0][T] %= MOD ans = DP[-1][1][0][0] + DP[-1][1][1][1] + DP[-1][1][2][0] - 1 ans %= MOD return ans print( solve(N) )