結果
問題 | No.2774 Wake up Record 2 |
ユーザー | mamenta |
提出日時 | 2024-06-07 21:38:58 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 24,686 bytes |
コンパイル時間 | 2,677 ms |
コンパイル使用メモリ | 213,452 KB |
実行使用メモリ | 22,900 KB |
最終ジャッジ日時 | 2024-06-07 21:39:03 |
合計ジャッジ時間 | 3,731 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 6 ms
19,908 KB |
testcase_01 | AC | 7 ms
19,908 KB |
testcase_02 | AC | 8 ms
19,912 KB |
testcase_03 | AC | 7 ms
19,904 KB |
testcase_04 | AC | 6 ms
19,908 KB |
testcase_05 | AC | 7 ms
19,784 KB |
testcase_06 | AC | 7 ms
19,908 KB |
testcase_07 | AC | 8 ms
19,776 KB |
testcase_08 | AC | 7 ms
19,908 KB |
testcase_09 | AC | 9 ms
19,908 KB |
testcase_10 | AC | 7 ms
19,908 KB |
testcase_11 | AC | 18 ms
20,420 KB |
testcase_12 | AC | 14 ms
20,160 KB |
testcase_13 | AC | 34 ms
21,224 KB |
testcase_14 | WA | - |
testcase_15 | AC | 23 ms
22,132 KB |
testcase_16 | AC | 23 ms
22,000 KB |
testcase_17 | AC | 27 ms
22,900 KB |
testcase_18 | AC | 26 ms
22,132 KB |
ソースコード
#include<iostream> #include<functional> #include<vector> #include<set> #include<queue> #include<map> #include<algorithm> #include<numeric> #include<cmath> #include<cstring> #include<bitset> #include<iomanip> #include<random> #include<fstream> #include<complex> #include<time.h> #include<stack> #include<cassert> using namespace std; #define endl "\n" #define ll long long #define ch char #define vec vector #define vll vector<ll> #define sll set<ll> #define pll pair<ll,ll> #define mkp make_pair #define mll map<ll,ll> #define puf push_front #define pub push_back #define pof pop_front() #define pob pop_back() #define em empty() #define fi first #define se second #define fr front() #define ba back() #define be begin() #define rbe rbegin() #define en end() #define ren rend() #define all(x) x.begin(),x.end() #define rall(x) x.rbegin(),x.rend() #define fo(i,x,y) for(ll i=x;i<=y;++i) #define fa(i,v) for(auto &i:v) #define re return #define sz size() #define so(v) sort(all(v)) #define pop_count(x) __builtin_popcount(x) #define rso(v) sort(rall(v)) #define rev(v) reverse(all(v)) #define i(x) for(ll i=0;i<x;++i) #define j(x) for(ll j=0;j<x;++j) #define k(x) for(ll k=0;k<x;++k) #define xx(k) while(k--) #define wh(x) while(x) #define st string //10^x 8765432109876543210 #define MAX 8611686018427387000 #define zeros(x) __builtin_ctzll(x) #define in insert #define uniq(v) v.erase(unique(all(v)),v.en); #define er(i,n) erase(i,n); //#define co(x,a) count(all(x),a) #define lo(v,a) lower_bound(v.begin(),v.end(),a) #define dou double #define ge(x,...) x __VA_ARGS__; ci(__VA_ARGS__); #define fix(n,ans) cout<<fixed<<std::setprecision(n)<<ans<<endl; void cc(){ cout<<endl; }; void ff(){ cout<<endl; }; void cl(){ cout<<endl; }; template<class T,class... A> void ff(T a,A... b){ cout<<a; (cout<<...<<(cout<<' ',b)); cout<<endl; }; template<class T,class... A> void cc(T a,A... b){ cout<<a; (cout<<...<<(cout<<' ',b)); cout<<' '; }; template<class T,class... A> void cl(T a,A... b){ cout<<a; (cout<<...<<(cout<<'\n',b)); cout<<endl; }; template<class T,class... A> void cn(T a,A... b){ cout<<a; (cout<<...<<(cout<<"",b)); }; template<class... A> void ci(A&... a){ (cin>>...>>a); }; template<class T>void ou(T v){fa(i,v)cout<<i<<" ";cout<<endl;} template<class T>void oun(T v){fa(i,v)cout<<i;cout<<endl;} template<class T>void ouu(T v){fa(i,v){fa(j,i)cout<<j<<" ";cout<<endl;}} template<class T> void oul(T v){fa(i,v)cout<<i<<endl;} template<class T>void in(T &v){fa(i,v)cin>>i;} template<class T>void inn(T &v){fa(i,v)fa(j,i)cin>>j;} template<class T>void oump(T &v){fa(i,v)ff(i.fi,i.se);} template<class T,class A>void pi(pair<T,A> &p){ci(p.fi,p.se);} template<class T,class A>void po(pair<T,A> &p){ff(p.fi,p.se);} template<class T,class... A> void fl(T a,A... b){ cout<<a; (cout<<...<<(cout<<' ',b)); cout<<endl<<flush; }; ll mod = 1000000007; ll mod9= 998244353; void init(); void solve(); /* void ori(); ll random_(){ std::random_device seed_gen; std::mt19937 engine(seed_gen()); // [-1.0, 1.0)の値の範囲で、等確率に実数を生成する std::uniform_real_distribution<> dist1(1.0, 100000); i(10000){ // 各分布法に基いて乱数を生成 ll n = dist1(engine); } return 0; } */ mll to_prime(ll x){ mll mp; for(ll i=2;i*i<=x;++i){ while(x%i==0){ ++mp[i]; x/=i; } } if(x!=1) ++mp[x]; re mp; } #define acc(v) accumulate(v.begin(),v.end(),0LL) #define acci(v,i) accumulate(v.begin(),v.begin()+i,0LL) #define dll deque<ll> int main(void){ init(); solve(); return 0; } template <typename T>class pnt{ public: T x,y; pnt(T x=0,T y=0):x(x),y(y){} pnt operator + (const pnt r)const { return pnt(x+r.x,y+r.y);} pnt operator - (const pnt r)const { return pnt(x-r.x,y-r.y);} pnt operator * (const pnt r)const { return pnt(x*r.x,y*r.y);} pnt operator / (const pnt r)const { return pnt(x/r.x,y/r.y);} pnt &operator += (const pnt r){ x+=r.x;y+=r.y;return *this;} pnt &operator -= (const pnt r){ x-=r.x;y-=r.y;return *this;} pnt &operator *= (const pnt r){ x*=r.x;y*=r.y;return *this;} pnt &operator /= (const pnt r){ x/=r.x;y/=r.y;return *this;} ll dist(const pnt r){ re (x-r.x)*(x-r.x)+(y-r.y)*(y-r.y); } ll man(const pnt r){ re abs(x-r.x)+abs(y-r.y); } pnt rot(const dou theta){ T xx,yy; xx=cos(theta)*x-sin(theta)*y; yy=sin(theta)*x+cos(theta)*y; return pnt(xx,yy); } }; istream &operator >> (istream &is,pnt<dou> &r){is>>r.x>>r.y;return is;} ostream &operator << (ostream &os,pnt<dou> &r){os<<r.x<<" "<<r.y;return os;} struct BIT{ ll n;vll v; BIT(ll n):n(n+n%2),v(2*(n+n%2)){}; ll op(ll x,ll y){ re gcd(x,y); } ll sum(ll i){ ll s=0; while(i){ s=gcd(s,v[i]); i-=i&-i; } re s; } void add(ll i,ll x){ while(i<=n){ v[i]=op(v[i],x); i+=i&-i; } } ll ran(ll l,ll r){ re op(sum(--l),sum(r)); } }; template<class T>bool chmaxeq(T& a, const T& b) { if (a <= b) { a = b; return 1; } return 0; } template<class T>bool chmineq(T& a, const T& b) { if (b <= a) { a = b; return 1; } return 0; } template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } struct Trie{ struct Node{ vll nxt; vec<st> done; ll dep,cnt=0; Node(ll c_):nxt(30),dep(c_){} }; ll root=0; vec<Node>tree={Node(root)}; void ins(st s){ ll c=0; for(ll i=0;i<s.sz;++i){ ll to=tree[c].nxt[s[i]-'a']; if(to==0){ to=tree.sz; tree[c].nxt[s[i]-'a']=to; tree.pub(Node(i+1)); } ++tree[to].cnt; c=to; } tree[c].done.pub(s); } ll cal(st s){ ll ans=0,c=0; for(ll i=0;i<s.sz;++i){ ll to=tree[c].nxt[s[i]-'a']; if(tree[to].cnt>1)++ans; else break; c=to; } re ans; } }; #define fo(i,x,y) for(ll i=x;i<=y;++i) #define rfo(_ii,_xx,_yy) for(ll _ii=_xx;_ii>=_yy;--_ii) #define qll queue<ll> template<typename T> using pq= priority_queue<T>; template<typename T> using pqg= priority_queue<T,vec<T>,greater<T>>; vec<pair<ch,ll>>rle(st s){//run_length_encoding ll n=s.sz; vec<pair<ch,ll>>ans; for(ll i=0;i<n;++i){ ll cnt=1; wh(i+1<n&&s[i+1]==s[i]){ ++cnt;++i; } ans.pub(mkp(s[i],cnt)); } re ans; } vector<vector<ll>> mat_mul(vector<vector<ll>> a, vector<vector<ll>> b, ll mod) { // 行列乗算 int n = a.size(); vector<vector<ll>> res(n, vector<ll>(n)); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { res[i][j] += a[i][k] * b[k][j]; res[i][j] %= mod; } } } return res; } vector<vector<ll>> mat_pow(vector<vector<ll>> a, ll b, ll mod) { // 行列累乗 int n = a.size(); vector<vector<ll>> res(n, vector<ll>(n)); for (int i = 0; i < n; i++) res[i][i] = 1; while (b) { if (b & 1) res = mat_mul(res, a, mod); a = mat_mul(a, a, mod); b >>= 1; } return res; } void Yes(bool f){ ff(f?"Yes":"No");re; } void yes(bool f){ ff(f?"yes":"no");re; } void YES(bool f){ ff(f?"YES":"NO");re; } void sub(); template <class T> struct Edge { int rv, from, to; // rev:逆向きの辺の番号 T cap, original_cap; Edge(int f, int t, T c,int r ) : rv(r), from(f), to(t), cap(c), original_cap(c) {} }; struct UF{ vll par,rk,siz; UF(ll n):par(n+5,-1),rk(n+5,0){ } ll root(ll x){ if(par[x]<0)return x; else return par[x]=root(par[x]); } bool same(ll x,ll y){ return root(x)==root(y); } bool unite(ll x,ll y){ ll rx=root(x),ry=root(y); if(rx==ry) return 0; if(rk[rx]<rk[ry]) swap(rx,ry); par[rx]+=par[ry]; par[ry]=rx; if(rk[rx]==rk[ry]) rk[rx]++; return 1; } ll size(ll x){ return -par[root(x)]; } }; ll dijkstra(ll start,ll n){//O((n+m)log(n)) vec<vec<pll>>e(n); vll dis(n+50,MAX); pqg<pll>q;q.push({0ll,start}); dis[start]=0; while(q.em^1){ auto [d,now]=q.top();q.pop(); if(dis[now]<d)continue; if(now==n)re dis[now]; for(auto[to,cst]:e[now])if(chmin(dis[to],cst+d)){ q.push({dis[to],to}); } } re -1; } struct UF_norank{ vll par,siz; UF_norank(ll n):par(n+5,-1){ } ll root(ll x){ if(par[x]<0)return x; else return par[x]=root(par[x]); } bool same(ll x,ll y){ return root(x)==root(y); } bool unite(ll from,ll to){ ll r_fr=root(from),r_to=root(to); if(r_fr==r_to) return 0; par[r_to]+=par[r_fr]; par[r_fr]=r_to; return 1; } ll size(ll x){ return -par[root(x)]; } }; vll di(ll start,ll n,vec<vec<pll>>cost){//O((n+m)log(n)) vll dis(n+5,MAX); pqg<pll>q;q.push({0ll,start}); dis[start]=0; while(q.em^1){ auto [d,now]=q.top();q.pop(); if(dis[now]<d)continue; //if(now==goal)break; for(auto [to,cst]:cost[now]){ if(chmin(dis[to],cst+d)){ q.push({dis[to],to}); } } } re dis; } vll z_algo(string pattern, string text) {//z algorithm 最長共通接頭辞 string str = pattern + "$" + text; ll n = str.length(),np=pattern.sz; vll Z(n+5),ret(n+5); for (ll i = 1,L=0,R=0,j; i < n; ++i) { if (R<i) { L = R = i; while (R<n && str[R-L] == str[R]) R++; Z[i] = R-L; if(i>np) ret[i-np-1]=Z[i]; R--; }else{ j= i-L; if (Z[j]<R-i+1){ Z[i]=Z[j]; }else{ L = i; while (R<n && str[R-L] == str[R]) R++; Z[i] = R-L; R--; } if(i>np) ret[i-np-1]=Z[i]; } } //ff("z"); ou(Z); re ret; } // 2^10 = 1024 //vll dy={-1,-1,-1,0,0,1,1,1},dx={-1,0,1,-1,1,-1,0,1}; /* O(2*10^8) 9*10^18 1LL<<62 4*10^18 ~~(v.be,v.be+n,x); not include v.be+n set.lower_bound(x); ->. *++~ ! /%* +- << < == & && +=?: */ // 12345678901234567890 //vll dy={-1,0,0,1},dx={0,-1,1,0}; const ll INF = mod * mod; typedef pair<int, int>P; #define per(i,n) for(int i=n-1;i>=0;i--) #define Rep(i,sta,n) for(int i=sta;i<n;i++) #define rp(i,n) for(int i=0;i<n;i++) #define rep1(i,n) for(int i=1;i<=n;i++) #define per1(i,n) for(int i=n;i>=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) ll mod_pow(ll x, ll n, ll m = mod) { if (n < 0) { ll res = mod_pow(x, -n, m); return mod_pow(res, m - 2, m); } if (abs(x) >= m)x %= m; if (x < 0)x += m; //if (x == 0)return 0; ll res = 1; while (n) { if (n & 1)res = res * x % m; x = x * x % m; n >>= 1; } return res; } //mod should be <2^31 struct mint { int n; mint() :n(0) { ; } mint(ll m) { if (m < 0 || mod <= m) { m %= mod; if (m < 0)m += mod; } n = m; } operator int() { return n; } }; bool operator==(mint a, mint b) { return a.n == b.n; } bool operator<(mint a, mint b) { return a.n < b.n; } mint operator+=(mint& a, mint b) { a.n += b.n; if (a.n >= mod)a.n -= (int)mod; return a; } mint operator-=(mint& a, mint b) { a.n -= b.n; if (a.n < 0)a.n += (int)mod; return a; } mint operator*=(mint& a, mint b) { a.n = ((ll)a.n * b.n) % mod; return a; } mint operator+(mint a, mint b) { return a += b; } mint operator-(mint a, mint b) { return a -= b; } mint operator*(mint a, mint b) { return a *= b; } mint operator^(mint a, ll n) { if (n == 0)return mint(1); mint res = (a * a) ^ (n / 2); if (n % 2)res = res * a; return res; } ll inv(ll a, ll p) { return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p); } mint operator/(mint a, mint b) { return a * mint(inv(b, mod)); } mint operator/=(mint& a, mint b) { a = a / b; return a; } bool operator==(mint a, ll b) {re a==mint(b);} bool operator<(mint a, ll b) {re a<mint(b);} mint operator+=(mint& a, ll b) {re a+=mint(b);} mint operator-=(mint& a, ll b) {re a-=mint(b);} mint operator*=(mint& a, ll b) {re a*=mint(b);} mint operator+(mint a, ll b) {re a+mint(b);} mint operator-(mint a, ll b) {re a-mint(b);} mint operator*(mint a, ll b) {re a*mint(b);} mint operator/(mint a, ll b) {re a/mint(b);} mint operator/=(mint& a, ll b) {re a/=mint(b);} bool operator==(ll a, mint b) {re mint(a)==b;} bool operator<(ll a, mint b) {re mint(a)<(b);} mint operator+(ll a, mint b) {re mint(a)+(b);} mint operator-(ll a, mint b) {re mint(a)-(b);} mint operator*(ll a, mint b) {re mint(a)*(b);} mint operator/(ll a, mint b) {re mint(a)/(b);} bool operator==(mint a, int b) {re a==mint(b);} bool operator<(mint a, int b) {re a<mint(b);} mint operator+=(mint& a, int b) {re a+=mint(b);} mint operator-=(mint& a, int b) {re a-=mint(b);} mint operator*=(mint& a, int b) {re a*=mint(b);} mint operator+(mint a, int b) {re a+mint(b);} mint operator-(mint a, int b) {re a-mint(b);} mint operator*(mint a, int b) {re a*mint(b);} mint operator/(mint a, int b) {re a/mint(b);} mint operator/=(mint& a, int b) {re a/=mint(b);} bool operator==(int a, mint b) {re mint(a)==b;} bool operator<(int a, mint b) {re mint(a)<(b);} mint operator+(int a, mint b) {re mint(a)+(b);} mint operator-(int a, mint b) {re mint(a)-(b);} mint operator*(int a, mint b) {re mint(a)*(b);} mint operator/(int a, mint b) {re mint(a)/(b);} //istream &operator >> (istream &is,pnt<dou> &r){is>>r.x>>r.y;return is;} //ostream &operator << (ostream &os,pnt<dou> &r){os<<r.x<<" "<<r.y;return os;} istream &operator >> (istream &is, mint &x) { ll m; is >> m; if (m < 0 || mod <= m) { m %= mod; if (m < 0)m += mod; } x.n = m; return is; } ostream &operator << (ostream &os, mint &i) { os << i.n; return os; } const int max_n = 1 << 21; mint fact[max_n], factinv[max_n]; void init_f() { fact[0] = mint(1); for (int i = 0; i < max_n - 1; i++) { fact[i + 1] = fact[i] * mint(i + 1); } factinv[max_n - 1] = mint(1) / fact[max_n - 1]; for (int i = max_n - 2; i >= 0; i--) { factinv[i] = factinv[i + 1] * mint(i + 1); } } mint comb(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[b] * factinv[a - b]; } mint combP(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[a - b]; } ll gcd(ll a, ll b) { a = abs(a); b = abs(b); if (a < b)swap(a, b); while (b) { ll r = a % b; a = b; b = r; } return a; } struct HLD { int n; vector<int> siz, top, dep, parent, in, out, seq; vector<vector<int>> adj; int cur; HLD() {} HLD(int n) { init(n); } void init(int n) {//初期化 this->n = n; siz.resize(n);//部分木のサイズ top.resize(n);//列の先頭 dep.resize(n);//深さ parent.resize(n);//親 in.resize(n); //新しい番号 out.resize(n);//部分木の最後の番号+1 seq.resize(n);//order iの頂点はseq[i] cur = 0; adj.assign(n, {});//隣接リスト } void add(int u, int v) {//辺を追加 adj[u].push_back(v); adj[v].push_back(u); } void work(int root = 0) {//ビルド top[root] = root; dep[root] = 0; parent[root] = -1; dfs1(root); dfs2(root); } void dfs1(int u) { if (parent[u] != -1) { adj[u].erase(find(adj[u].begin(), adj[u].end(), parent[u])); //親を隣接リストから消す } siz[u] = 1; for (auto &v : adj[u]) { parent[v] = u; dep[v] = dep[u] + 1; dfs1(v); siz[u] += siz[v]; //adj[u][0]をheavyになるようにする if (siz[v] > siz[adj[u][0]]) { swap(v, adj[u][0]); } } } void dfs2(int u) { in[u] = cur++;//新しい番号を割り振る seq[in[u]] = u;//order in[u]の頂点はu for (auto v : adj[u]) { top[v] = v == adj[u][0] ? top[u] : v; dfs2(v); } out[u] = cur; } int lca(int u, int v) { while (top[u] != top[v]) {//同じ列でない間 if (dep[top[u]] > dep[top[v]]) {//深い方から上る u = parent[top[u]]; } else { v = parent[top[v]]; } } return dep[u] < dep[v] ? u : v; } int dist(int u, int v) { return dep[u] + dep[v] - 2 * dep[lca(u, v)]; } int jump(int u, int k) { if (dep[u] < k) { return -1; } int d = dep[u] - k; while (dep[top[u]] > d) { u = parent[top[u]]; } return seq[in[u] - dep[u] + d]; } bool isAncester(int u, int v) { return in[u] <= in[v] && in[v] < out[u]; } int rootedChild(int u, int v) { if (u == v) { return u; } if (!isAncester(u, v)) { return parent[u]; } auto it = std::upper_bound(adj[u].begin(), adj[u].end(), v, [&](int x, int y) { return in[x] < in[y]; }) - 1; return *it; } int rootedSize(int u, int v) { if (u == v) { return n; } if (!isAncester(v, u)) { return siz[v]; } return n - siz[rootedChild(v, u)]; } int rootedLca(int a, int b, int c) { return lca(a, b) ^ lca(b, c) ^ lca(c, a); } }; void init(){ ios::sync_with_stdio(false); cin.tie(0); } void solve(){ //ge(ll,t); ll t=1; xx(t){ sub(); } } /* Rerooting: 全方位木 DP 問題ごとに以下を書き換える - 型DPと単位元 - 型DPに対する二項演算 merge - まとめたDPを用いて新たな部分木のDPを計算する add_root 計算量: O(N) */ vll vc; struct Rerooting { /* start 問題ごとに書き換え */ struct DP { // DP の型 long long dp; ll s=0; DP(long long dp_) : dp(dp_){} DP(long long dp_,ll s_) : dp(dp_),s(s_){} }; const DP identity = DP(0); // 単位元(末端の値は add_root(identity) になるので注意) function<DP(DP, DP)> merge = [](DP dp_cum, DP d) -> DP { return DP(dp_cum.dp + d.dp ,dp_cum.s+d.s); }; struct Edge { int to; }; function<DP(DP,ll)> add_root = [](DP d,ll v) -> DP { return DP(d.dp+d.s , vc[v]+d.s ); }; /* end 問題ごとに書き換え */ // グラフの定義 using Graph = vector<vector<Edge>>; vector<vector<DP>> dp; // dp[v][i]: vから出るi番目の有向辺に対応する部分木のDP vector<DP> ans; // ans[v]: 頂点vを根とする木の答え Graph G; Rerooting(int N) : G(N) {//ここからスタート dp.resize(N); ans.assign(N, identity); } void add_edge(int a, int b) { G[a].push_back({b}); } void build() { dfs(0); // 普通に木DP bfs(0, identity); // 残りの部分木に対応するDPを計算 } DP dfs(int v, int p = -1) { // 頂点v, 親p DP dp_cum = identity; int deg = G[v].size();//次数 dp[v] = vector<DP>(deg, identity);//vを根とする for (int i = 0; i < deg; i++) { int u = G[v][i].to; if (u == p) continue; dp[v][i] = dfs(u, v); dp_cum = merge(dp_cum, dp[v][i]); } return add_root(dp_cum,v); } void bfs(int v, const DP& dp_p, int p = -1) { // bfs だが、実装が楽なので中身は dfs になっている int deg = G[v].size(); for (int i = 0; i < deg; i++) { // 前のbfsで計算した有向辺に対応する部分木のDPを保存 if (G[v][i].to == p) dp[v][i] = dp_p; } vector<DP> dp_l(deg + 1, identity), dp_r(deg + 1, identity); // 累積merge for (int i = 0; i < deg; i++) { dp_l[i + 1] = merge(dp_l[i], dp[v][i]); } for (int i = deg - 1; i >= 0; i--) { dp_r[i] = merge(dp_r[i + 1], dp[v][i]); } ans[v] = add_root(dp_l[deg],v); // 頂点 v の答え for (int i = 0; i < deg; i++) { // 一つ隣の頂点に対しても同様に計算 int u = G[v][i].to; if (u == p) continue; bfs(u, add_root(merge(dp_l[i], dp_r[i + 1]),v), v); } } }; /* SegTreeLazy<X,M>(n,fx,fa,fm,ex,em): モノイド(集合X, 二項演算fx,fa,fm, 単位元ex,em)についてサイズnで構築 set(int i, X x), build(): i番目の要素をxにセット。まとめてセグ木を構築する。O(n) update(l,r,x): [l,r) O(log(n)) query(a,b): [a,b) 全てにfxを作用させた値を取得。O(log(n)) */ struct lazy { struct X{ //a*x+b; ll x; X(ll _x):x(_x){;} bool operator==(X r) {re r.x==x;} }; struct A { ll a; A(ll _a):a(_a){;} bool operator==(A r) {re a==r.a;} }; X opx(X x1,X x2) { return x1.x+x2.x; } X ex=X(0ll); X opax(A a,X x) { return a.a+x.x; } A opa(A a1,A a2) { A a=a1; a.a+=a2.a; return a; } A ea=A(0ll); using FX = function<X(X, X)>; using FAX = function<X(A,X)>; using FA = function<A(A, A)>; int n; vector<X> dat; vector<A> v_lazy; lazy(int n_):dat(n_*4,ex),v_lazy(n_*4,ea){ int x = 1; while (n_ > x) x *= 2; n = x; //fl("n",n); } void set(int i, X x) { dat[i + n - 1] = x; } void build() { for (int k = n - 2; k >= 0; k--) dat[k] = opx(dat[2 * k + 1], dat[2 * k + 2]); } /* lazy eval */ void eval(int k) { if (v_lazy[k] == ea) return; // 更新するものが無ければ終了 if (k < n - 1) { // 葉でなければ子に伝搬 v_lazy[k * 2 + 1] = opa(v_lazy[k * 2 + 1], v_lazy[k]); v_lazy[k * 2 + 2] = opa(v_lazy[k * 2 + 2], v_lazy[k]); } // 自身を更新 dat[k] = opax(v_lazy[k],dat[k]); v_lazy[k] = ea; } void update(int a, int b, A x, int k, int l, int r) { eval(k); if (a <= l && r <= b) { // 完全に内側の時 v_lazy[k] = opa(v_lazy[k], x); eval(k); } else if (a < r && l < b) { // 一部区間が被る時 update(a, b, x, k * 2 + 1, l, (l + r) / 2); // 左の子 update(a, b, x, k * 2 + 2, (l + r) / 2, r); // 右の子 dat[k] = opx(dat[k * 2 + 1], dat[k * 2 + 2]); } } void update(int L, int R, A a) { update(L, R, a, 0, 0, n); } void update(int L, int R, ll a) { A Aa=A(a); update(L, R, Aa, 0, 0, n); } X query_sub(int a, int b, int k, int l, int r) { eval(k); if (r <= a || b <= l) { // 完全に外側の時 return ex; } else if (a <= l && r <= b) { // 完全に内側の時 return dat[k]; } else { // 一部区間が被る時 X vl = query_sub(a, b, k * 2 + 1, l, (l + r) / 2); X vr = query_sub(a, b, k * 2 + 2, (l + r) / 2, r); return opx(vl, vr); } } X query(int a, int b) { return query_sub(a, b, 0, 0, n); } }; /* SegTreeLazy<X,M>(n,fx,fa,fm,ex,em): モノイド(集合X, 二項演算fx,fa,fm, 単位元ex,em)についてサイズnで構築 set(int i, X x), build(): i番目の要素をxにセット。まとめてセグ木を構築する。O(n) update(l,r,x): [l,r) O(log(n)) query(a,b): [a,b) 全てにfxを作用させた値を取得。O(log(n)) */ struct segtree { struct X{ ll x=0;//長さ X(ll _x):x(_x){;} X():x(0){;} bool operator==(X r) {re r.x==x;} }; X opx(X x1,X x2) { return max(x1.x,x2.x); } X ex=X(0); using FX = function<X(X, X)>; int n; vector<X> dat; segtree(int n_):dat(n_*4,ex){ int x = 1; while (n_ > x) x *= 2; n = x; //fl("n",n); } void set(int i, X x) { dat[i + n - 1] = x; } void build() { for (int k = n - 2; k >= 0; k--) dat[k] = opx(dat[2 * k + 1], dat[2 * k + 2]); } void update(int i, X x) { i += n - 1; dat[i] = x; while (i > 0) { i = (i - 1) / 2; // parent dat[i] = opx(dat[i * 2 + 1], dat[i * 2 + 2]); } } X query_sub(int a, int b, int k, int l, int r) { if (r <= a || b <= l) { // 完全に外側の時 return ex; } else if (a <= l && r <= b) { // 完全に内側の時 return dat[k]; } else { // 一部区間が被る時 X vl = query_sub(a, b, k * 2 + 1, l, (l + r) / 2); X vr = query_sub(a, b, k * 2 + 2, (l + r) / 2, r); return opx(vl, vr); } } X query(int a, int b) { return query_sub(a, b, 0, 0, n); } }; #define rep(i,n) for (int i = 0; i < (n); ++i) // Coodinate Compression // https://youtu.be/fR3W5IcBGLQ?t=8550 template<typename T=ll> struct CC { bool initialized; vector<T> xs; CC(): initialized(false) {} void add(T x) { xs.push_back(x);} void init() { sort(xs.begin(), xs.end()); xs.erase(unique(xs.begin(),xs.end()),xs.end()); initialized = true; } int operator()(T x) { if (!initialized) init(); return upper_bound(xs.begin(), xs.end(), x) - xs.begin() - 1; } T operator[](int i) { if (!initialized) init(); return xs[i]; } int size() { if (!initialized) init(); return xs.size(); } }; void sub() { ge(ll,n,k); vll v(n);in(v); CC sc; i(n) { sc.add(v[i]); } i(n) v[i]=sc(v[i]); vll s=v; so(s); if(s[k-1]==s[k]) { ff(0);re; } ll b=s[k-1]; vll ans; for(ll i=1;i<n;++i) { if(v[i-1]<=b&&b<v[i]) { ans.pub(i+1); } } ff(ans.sz); ou(ans); }