結果
問題 | No.2780 The Bottle Imp |
ユーザー |
![]() |
提出日時 | 2024-06-07 21:39:31 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 10,267 bytes |
コンパイル時間 | 2,740 ms |
コンパイル使用メモリ | 196,668 KB |
実行使用メモリ | 32,792 KB |
最終ジャッジ日時 | 2024-12-27 13:35:58 |
合計ジャッジ時間 | 5,515 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 39 WA * 1 |
ソースコード
#include <algorithm>#include <array>#include <bitset>#include <cassert>#include <chrono>#include <cmath>#include <complex>#include <deque>#include <forward_list>#include <fstream>#include <functional>#include <iomanip>#include <ios>#include <iostream>#include <limits>#include <list>#include <map>#include <memory>#include <numeric>#include <optional>#include <queue>#include <random>#include <set>#include <sstream>#include <stack>#include <string>#include <tuple>#include <type_traits>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>using namespace std;using lint = long long;using pint = pair<int, int>;using plint = pair<lint, lint>;struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;#define ALL(x) (x).begin(), (x).end()#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)#define REP(i, n) FOR(i,0,n)#define IREP(i, n) IFOR(i,0,n)template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}};int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); }template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); }template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); }template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os <<']'; return os; }template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v<< ','; os << ']'; return os; }template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);},tpl); return is; }template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) {((os << args << ','), ...);}, tpl); return os << ')'; }template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os<< v << ','; os << '}'; return os; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os <<']'; return os; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}';return os; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os <<'}'; return os; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v <<','; os << '}'; return os; }template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; }template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for(auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }#ifdef HITONANODE_LOCALconst string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET<< std::endl#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " <<__FILE__ << COLOR_RESET << std::endl : std::cerr)#else#define dbg(x) ((void)0)#define dbgif(cond, x) ((void)0)#endif// Directed graph library to find strongly connected components (強連結成分分解)// 0-indexed directed graph// Complexity: O(V + E)struct DirectedGraphSCC {int V; // # of Verticesstd::vector<std::vector<int>> to, from;std::vector<int> used; // Only true/falsestd::vector<int> vs;std::vector<int> cmp;int scc_num = -1;DirectedGraphSCC(int V = 0) : V(V), to(V), from(V), cmp(V) {}void _dfs(int v) {used[v] = true;for (auto t : to[v])if (!used[t]) _dfs(t);vs.push_back(v);}void _rdfs(int v, int k) {used[v] = true;cmp[v] = k;for (auto t : from[v])if (!used[t]) _rdfs(t, k);}void add_edge(int from_, int to_) {assert(from_ >= 0 and from_ < V and to_ >= 0 and to_ < V);to[from_].push_back(to_);from[to_].push_back(from_);}// Detect strongly connected components and return # of them.// Also, assign each vertex `v` the scc id `cmp[v]` (0-indexed)int FindStronglyConnectedComponents() {used.assign(V, false);vs.clear();for (int v = 0; v < V; v++)if (!used[v]) _dfs(v);used.assign(V, false);scc_num = 0;for (int i = (int)vs.size() - 1; i >= 0; i--)if (!used[vs[i]]) _rdfs(vs[i], scc_num++);return scc_num;}// Find and output the vertices that form a closed cycle.// output: {v_1, ..., v_C}, where C is the length of cycle,// {} if there's NO cycle (graph is DAG)int _c, _init;std::vector<int> _ret_cycle;bool _dfs_detectcycle(int now, bool b0) {if (now == _init and b0) return true;for (auto nxt : to[now])if (cmp[nxt] == _c and !used[nxt]) {_ret_cycle.emplace_back(nxt), used[nxt] = 1;if (_dfs_detectcycle(nxt, true)) return true;_ret_cycle.pop_back();}return false;}std::vector<int> DetectCycle() {int ns = FindStronglyConnectedComponents();if (ns == V) return {};std::vector<int> cnt(ns);for (auto x : cmp) cnt[x]++;_c = std::find_if(cnt.begin(), cnt.end(), [](int x) { return x > 1; }) - cnt.begin();_init = std::find(cmp.begin(), cmp.end(), _c) - cmp.begin();used.assign(V, false);_ret_cycle.clear();_dfs_detectcycle(_init, false);return _ret_cycle;}// After calling `FindStronglyConnectedComponents()`, generate a new graph by uniting all// vertices belonging to the same component(The resultant graph is DAG).DirectedGraphSCC GenerateTopologicalGraph() {DirectedGraphSCC newgraph(scc_num);for (int s = 0; s < V; s++)for (auto t : to[s]) {if (cmp[s] != cmp[t]) newgraph.add_edge(cmp[s], cmp[t]);}return newgraph;}};int main() {int N;cin >> N;DirectedGraphSCC graph(N);REP(s, N) {int m;cin >> m;vector<int> ts(m);cin >> ts;for (auto &x : ts) {--x;graph.add_edge(s, x);}}auto g = graph.FindStronglyConnectedComponents();int c = graph.cmp.at(0);// assert(c == 0);if (c != 0) {puts("No");exit(0);}auto ng = graph.GenerateTopologicalGraph();// dbg(ng.cmp);REP(i, g - 1) {auto v = sort_unique(ng.to.at(i));if (v != vector<int>{i + 1}) {puts("No");exit(0);}// if (c == i) continue;}puts("Yes");}