結果
問題 | No.2780 The Bottle Imp |
ユーザー | イルカ |
提出日時 | 2024-06-11 09:54:00 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 3,903 bytes |
コンパイル時間 | 383 ms |
コンパイル使用メモリ | 82,304 KB |
実行使用メモリ | 259,200 KB |
最終ジャッジ日時 | 2024-06-11 09:54:08 |
合計ジャッジ時間 | 5,185 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 70 ms
72,704 KB |
testcase_01 | AC | 65 ms
67,456 KB |
testcase_02 | AC | 66 ms
67,328 KB |
testcase_03 | AC | 72 ms
67,584 KB |
testcase_04 | AC | 76 ms
67,328 KB |
testcase_05 | AC | 76 ms
67,584 KB |
testcase_06 | AC | 72 ms
67,328 KB |
testcase_07 | TLE | - |
testcase_08 | TLE | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
testcase_40 | -- | - |
testcase_41 | -- | - |
testcase_42 | -- | - |
testcase_43 | -- | - |
ソースコード
# SCC→強連結成分をノードとみなしてDFSで訪問可能判定? from collections import defaultdict #from atcoder.scc import SCCGraph ### # https://github.com/not522/ac-library-python import sys import typing class CSR: def __init__( self, n: int, edges: typing.List[typing.Tuple[int, int]]) -> None: self.start = [0] * (n + 1) self.elist = [0] * len(edges) for e in edges: self.start[e[0] + 1] += 1 for i in range(1, n + 1): self.start[i] += self.start[i - 1] counter = self.start.copy() for e in edges: self.elist[counter[e[0]]] = e[1] counter[e[0]] += 1 class SCCGraph: ''' Reference: R. Tarjan, Depth-First Search and Linear Graph Algorithms ''' def __init__(self, n: int) -> None: self._n = n self._edges: typing.List[typing.Tuple[int, int]] = [] def num_vertices(self) -> int: return self._n def add_edge(self, from_vertex: int, to_vertex: int) -> None: self._edges.append((from_vertex, to_vertex)) def scc_ids(self) -> typing.Tuple[int, typing.List[int]]: g = CSR(self._n, self._edges) now_ord = 0 group_num = 0 visited = [] low = [0] * self._n order = [-1] * self._n ids = [0] * self._n sys.setrecursionlimit(max(self._n + 1000, sys.getrecursionlimit())) def dfs(v: int) -> None: nonlocal now_ord nonlocal group_num nonlocal visited nonlocal low nonlocal order nonlocal ids low[v] = now_ord order[v] = now_ord now_ord += 1 visited.append(v) for i in range(g.start[v], g.start[v + 1]): to = g.elist[i] if order[to] == -1: dfs(to) low[v] = min(low[v], low[to]) else: low[v] = min(low[v], order[to]) if low[v] == order[v]: while True: u = visited[-1] visited.pop() order[u] = self._n ids[u] = group_num if u == v: break group_num += 1 for i in range(self._n): if order[i] == -1: dfs(i) for i in range(self._n): ids[i] = group_num - 1 - ids[i] return group_num, ids def scc(self) -> typing.List[typing.List[int]]: ids = self.scc_ids() group_num = ids[0] counts = [0] * group_num for x in ids[1]: counts[x] += 1 groups: typing.List[typing.List[int]] = [[] for _ in range(group_num)] for i in range(self._n): groups[ids[1][i]].append(i) return groups ### N = int(input()) sccgraph = SCCGraph(N) graph = defaultdict(list) for i in range(1,N+1): A = list(map(int, input().split()))[1:] for a in A: sccgraph.add_edge(i-1, a-1) graph[i-1].append(a-1) # 強連結成分を取得 groups = sccgraph.scc() # 強連結成分を1つのノードとみなして新しいグラフを構築 scc_mapping = [-1] * N for i, group in enumerate(groups): for a in group: scc_mapping[a] = i scc_graph = defaultdict(list) for i, group in enumerate(groups): for a in group: a_next = [scc_mapping[n] for n in graph[a]] scc_graph[i] = list(set(scc_graph[i]+a_next)) def dfs(start): todo = [start,] seen = [False] * len(groups) while todo: tgt = todo.pop() if seen[tgt]: continue seen[tgt] = True for next in scc_graph[tgt]: todo.append(next) return seen connected = dfs(0) if(all(connected)): print("Yes") else: print("No")