結果
| 問題 |
No.2780 The Bottle Imp
|
| コンテスト | |
| ユーザー |
イルカ
|
| 提出日時 | 2024-06-11 10:44:08 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 4,893 bytes |
| コンパイル時間 | 290 ms |
| コンパイル使用メモリ | 82,176 KB |
| 実行使用メモリ | 279,108 KB |
| 最終ジャッジ日時 | 2024-06-11 10:44:23 |
| 合計ジャッジ時間 | 11,480 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 8 TLE * 1 -- * 31 |
ソースコード
# SCC→強連結成分をノードとみなしてDFSで訪問可能判定?
from collections import defaultdict
#from atcoder.scc import SCCGraph
###
# https://github.com/not522/ac-library-python
import sys
import typing
class CSR:
def __init__(
self, n: int, edges: typing.List[typing.Tuple[int, int]]) -> None:
self.start = [0] * (n + 1)
self.elist = [0] * len(edges)
for e in edges:
self.start[e[0] + 1] += 1
for i in range(1, n + 1):
self.start[i] += self.start[i - 1]
counter = self.start.copy()
for e in edges:
self.elist[counter[e[0]]] = e[1]
counter[e[0]] += 1
class SCCGraph:
'''
Reference:
R. Tarjan,
Depth-First Search and Linear Graph Algorithms
'''
def __init__(self, n: int) -> None:
self._n = n
self._edges: typing.List[typing.Tuple[int, int]] = []
def num_vertices(self) -> int:
return self._n
def add_edge(self, from_vertex: int, to_vertex: int) -> None:
self._edges.append((from_vertex, to_vertex))
def scc_ids(self) -> typing.Tuple[int, typing.List[int]]:
g = CSR(self._n, self._edges)
now_ord = 0
group_num = 0
visited = []
low = [0] * self._n
order = [-1] * self._n
ids = [0] * self._n
sys.setrecursionlimit(max(self._n + 1000, sys.getrecursionlimit()))
def dfs(v: int) -> None:
nonlocal now_ord
nonlocal group_num
nonlocal visited
nonlocal low
nonlocal order
nonlocal ids
stack = []
for start in range(self._n):
if order[start] != -1:
continue
stack.append((start, 'visit'))
parent = [-1] * self._n # 親を記録するリスト
while stack:
v, action = stack.pop()
if action == 'visit':
if order[v] == -1:
low[v] = now_ord
order[v] = now_ord
now_ord += 1
visited.append(v)
stack.append((v, 'process'))
for i in range(g.start[v], g.start[v + 1]):
to = g.elist[i]
if order[to] == -1:
parent[to] = v
stack.append((to, 'visit'))
else:
low[v] = min(low[v], order[to])
elif action == 'process':
if parent[v] != -1:
low[parent[v]] = min(low[parent[v]], low[v])
if low[v] == order[v]:
while True:
u = visited[-1]
visited.pop()
order[u] = self._n
ids[u] = group_num
if u == v:
break
group_num += 1
return ids
for i in range(self._n):
if order[i] == -1:
dfs(i)
for i in range(self._n):
ids[i] = group_num - 1 - ids[i]
return group_num, ids
def scc(self) -> typing.List[typing.List[int]]:
ids = self.scc_ids()
group_num = ids[0]
counts = [0] * group_num
for x in ids[1]:
counts[x] += 1
groups: typing.List[typing.List[int]] = [[] for _ in range(group_num)]
for i in range(self._n):
groups[ids[1][i]].append(i)
return groups
###
N = int(input())
sccgraph = SCCGraph(N)
graph = defaultdict(list)
for i in range(1,N+1):
A = list(map(int, input().split()))[1:]
for a in A:
sccgraph.add_edge(i-1, a-1)
graph[i-1].append(a-1)
groups = sccgraph.scc()
num_groups = len(groups)
node_to_group = [0] * N
# 各ノードがどの強連結成分に属するかを記録する
for group_index, nodes in enumerate(groups):
for node in nodes:
node_to_group[node] = group_index
group_connections = [set() for _ in range(num_groups)]
# グラフ内のノード間の接続を強連結成分間の接続に変換する
for node in range(N):
current_group = node_to_group[node]
for neighbor in graph[node]:
neighbor_group = node_to_group[neighbor]
if neighbor_group == current_group:
continue
group_connections[current_group].add(neighbor_group)
# 各強連結成分が次の強連結成分と直接接続されているかを確認する
for group in range(num_groups - 1):
if group + 1 not in group_connections[group]:
print("No")
exit()
print("Yes")
イルカ