結果

問題 No.2787 グッドスタイン数列?
ユーザー ecotteaecottea
提出日時 2024-06-14 23:00:54
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 3 ms / 2,000 ms
コード長 7,193 bytes
コンパイル時間 4,612 ms
コンパイル使用メモリ 267,420 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-06-14 23:01:01
合計ジャッジ時間 6,263 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 2 ms
6,944 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 2 ms
6,944 KB
testcase_07 AC 2 ms
6,944 KB
testcase_08 AC 2 ms
6,940 KB
testcase_09 AC 2 ms
6,940 KB
testcase_10 AC 2 ms
6,944 KB
testcase_11 AC 2 ms
6,940 KB
testcase_12 AC 2 ms
6,940 KB
testcase_13 AC 2 ms
6,944 KB
testcase_14 AC 2 ms
6,944 KB
testcase_15 AC 2 ms
6,940 KB
testcase_16 AC 2 ms
6,944 KB
testcase_17 AC 2 ms
6,940 KB
testcase_18 AC 2 ms
6,940 KB
testcase_19 AC 2 ms
6,940 KB
testcase_20 AC 2 ms
6,944 KB
testcase_21 AC 2 ms
6,940 KB
testcase_22 AC 2 ms
6,944 KB
testcase_23 AC 2 ms
6,940 KB
testcase_24 AC 2 ms
6,944 KB
testcase_25 AC 2 ms
6,940 KB
testcase_26 AC 2 ms
6,940 KB
testcase_27 AC 2 ms
6,940 KB
testcase_28 AC 2 ms
6,940 KB
testcase_29 AC 2 ms
6,940 KB
testcase_30 AC 2 ms
6,940 KB
testcase_31 AC 2 ms
6,940 KB
testcase_32 AC 2 ms
6,944 KB
testcase_33 AC 2 ms
6,944 KB
testcase_34 AC 2 ms
6,940 KB
testcase_35 AC 2 ms
6,940 KB
testcase_36 AC 2 ms
6,944 KB
testcase_37 AC 2 ms
6,944 KB
testcase_38 AC 2 ms
6,940 KB
testcase_39 AC 2 ms
6,944 KB
testcase_40 AC 2 ms
6,940 KB
testcase_41 AC 3 ms
6,944 KB
testcase_42 AC 2 ms
6,940 KB
testcase_43 AC 2 ms
6,940 KB
testcase_44 AC 2 ms
6,940 KB
testcase_45 AC 2 ms
6,940 KB
testcase_46 AC 2 ms
6,940 KB
testcase_47 AC 2 ms
6,940 KB
testcase_48 AC 2 ms
6,940 KB
testcase_49 AC 2 ms
6,944 KB
testcase_50 AC 2 ms
6,944 KB
testcase_51 AC 2 ms
6,940 KB
testcase_52 AC 2 ms
6,940 KB
testcase_53 AC 2 ms
6,940 KB
testcase_54 AC 2 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
int DX[4] = {1, 0, -1, 0}; // 4 近傍(下,右,上,左)
int DY[4] = {0, 1, 0, -1};
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
template <size_t N> inline int lsb(const bitset<N>& b) { return b._Find_first(); }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す
#endif


//【桁の数の取得】O(log n)
/*
* n を b 進表記したときの桁の数字を上位桁から順に並べたリストを返す.
*
* 制約:|b| ≧ 2
*/
vector<__int128> integer_digits(ll n, ll b) {
	// verify : https://atcoder.jp/contests/abc105/tasks/abc105_c

	vector<__int128> ds;
	while (n != 0) {
		ll d = n % b;
		ds.push_back(d);
		n = (n - d) / b;
	}

	return ds;
}


//【累乗(切り詰め)】O(log_a(inf))
/*
* 非負整数 a, n に対し min(a^n, inf) を返す.
*/
ll truncated_pow(ll a, ll n, ll inf = INFL) {
	// verify : https://atcoder.jp/contests/abc322/tasks/abc322_g

	Assert(a >= 0 && n >= 0);

	if (n == 0 || a == 1) return 1;
	if (a == 0) return 0;

	ll val = 1;
	for (ll i = 0; i < n; i++) {
		// val * a >= inf
		if (val >= (inf + a - 1) / a) {
			val = inf;
			break;
		}
		val *= a;
	}

	return val;
}


int main() {
	//	input_from_file("input.txt");
	//	output_to_file("output.txt");

	ll n_, b_, c_;
	cin >> n_ >> b_ >> c_;

	__int128 n(n_), b(b_), c(c_);

	auto d = integer_digits(n, b);
	d.resize(max(sz(d), 2));

	__int128 step = 1;

	Yes(1);

	while (1) {
		dump("d:", d, "b:", b, "step:", step);

		bool ok = true;
		repe(x, d) {
			if (x > 0) {
				ok = false;
				break;
			}
		}
		if (ok) {
			step += 1;
			break;
		}

		if (d[0] > 0) {
			b += d[0];
			step += 2 * d[0];
			d[0] = 0;
		}
		else {
			if (d[1] > 0) {
				auto pow2 = truncated_pow(2, d[1]);
				if (pow2 == INFL) {
					Yes(0);
					return 0;
				}

				auto nb = b * pow2 + (pow2 - 1);
				step += (nb - b) * 2;
				d[1] = 0;
				b = nb;
			}
			else {
				d[0] = b;
				d[1] = b;
				repi(i, 2, sz(d) - 1) {
					if (d[i] == 0) {
						d[i] = b;
					}
					else {
						d[i]--;
						break;
					}
				}

				b++;
				step += 2;
			}
		}

		if (step > c) {
			Yes(0);
			return 0;
		}
	}

	if (step <= c) {
		Yes(1);
		cout << (ll)step << endl;
	}
	else {
		Yes(0);
	}
}
0