結果
問題 | No.382 シャイな人たち (2) |
ユーザー | Min_25 |
提出日時 | 2016-06-19 06:08:58 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 1,177 ms / 8,000 ms |
コード長 | 5,273 bytes |
コンパイル時間 | 771 ms |
コンパイル使用メモリ | 79,956 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-11 05:18:18 |
合計ジャッジ時間 | 22,610 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1,177 ms
5,248 KB |
testcase_01 | AC | 1,177 ms
5,248 KB |
testcase_02 | AC | 1,020 ms
5,248 KB |
testcase_03 | AC | 963 ms
5,248 KB |
testcase_04 | AC | 957 ms
5,248 KB |
testcase_05 | AC | 1,036 ms
5,248 KB |
testcase_06 | AC | 839 ms
5,248 KB |
testcase_07 | AC | 1,084 ms
5,248 KB |
testcase_08 | AC | 843 ms
5,248 KB |
testcase_09 | AC | 867 ms
5,248 KB |
testcase_10 | AC | 939 ms
5,248 KB |
testcase_11 | AC | 909 ms
5,248 KB |
testcase_12 | AC | 927 ms
5,248 KB |
testcase_13 | AC | 949 ms
5,248 KB |
testcase_14 | AC | 1,041 ms
5,248 KB |
testcase_15 | AC | 1,069 ms
5,248 KB |
testcase_16 | AC | 960 ms
5,248 KB |
testcase_17 | AC | 845 ms
5,248 KB |
testcase_18 | AC | 1,082 ms
5,248 KB |
testcase_19 | AC | 993 ms
5,248 KB |
testcase_20 | AC | 2 ms
5,248 KB |
ソースコード
#include <cstdio> #include <cassert> #include <cmath> #include <cstring> #include <algorithm> #include <iostream> #include <vector> #include <map> #include <set> #include <functional> #include <tuple> #define _fetch(_1, _2, _3, _4, name, ...) name #define rep2(i, n) rep3(i, 0, n) #define rep3(i, a, b) rep4(i, a, b, 1) #define rep4(i, a, b, c) for (int i = int(a); i < int(b); i += int(c)) #define rep(...) _fetch(__VA_ARGS__, rep4, rep3, rep2, _)(__VA_ARGS__) using namespace std; using i64 = long long; using u8 = unsigned char; using u32 = unsigned; using u64 = unsigned long long; using f80 = long double; using u128 = __uint128_t; const u32 N_MAX = 120; int degs[N_MAX + 1]; u128 V_deg[N_MAX + 2]; u128 edges[N_MAX + 1]; inline int ctz(u128 n) { if (u64(n)) return __builtin_ctzll(u64(n)); else return 64 + __builtin_ctzll(u64(n >> 64)); } inline int pop_count(u128 n) { if (u64(n)) return __builtin_popcountll(u64(n)) + __builtin_popcountll(u64(n >> 64)); else return __builtin_popcountll(u64(n >> 64)); } inline void delete_v(u128 G, int v) { auto Nv = edges[v] & G; while (Nv) { auto fy = Nv & -Nv; int y = ctz(fy); V_deg[degs[y]--] ^= fy; V_deg[degs[y]] ^= fy; Nv ^= fy; } } inline void insert_v(u128 G, int v) { auto Nv = edges[v] & G; while (Nv) { auto fy = Nv & -Nv; int y = ctz(fy); V_deg[degs[y]++] ^= fy; V_deg[degs[y]] ^= fy; Nv ^= fy; } } inline void delete_V(u128 G, u128 V) { while (V) { auto fv = V & -V; int v = ctz(fv); delete_v(G, v); V ^= fv; } } inline void insert_V(u128 G, u128 V) { while (V) { auto fv = V & -V; int v = ctz(fv); insert_v(G, v); V ^= fv; } } // P(v, is_clique) using P = pair<int, bool>; inline P max_deg_vertex(u128 G, u128 S, int beg) { for (int deg = beg; ; ++deg) { u128 Vd = V_deg[deg] & G; if ((S |= Vd) != G) continue; auto fv = Vd & -Vd; int v = ctz(fv); return P(v, (Vd == G) && (pop_count(G) == deg + 1)); } } int vertices[N_MAX]; // Naive: O(3^(n/3)) ~= O(1.4422^n) int mis1(u128 G) { if (G == 0) return 0; for (int deg = 0; ; ++deg) if (V_deg[deg] & G) { int i_max = 0; auto fv = V_deg[deg] & G; fv &= -fv; int v = ctz(fv); auto Nv = (fv ^ edges[v]) & G; while (Nv) { auto fy = Nv & -Nv; int y = ctz(fy); auto Ny = edges[y] & G; delete_v(G, y); i_max = max(i_max, mis1(G ^ (Ny | fy))); insert_v(G, y); Nv ^= fy; } return 1 + i_max; } } // O(1.2905^n) int mis3(u128 G, int idx=0) { if (G == 0) return 0; // d(v) <= 1 const u128 V01 = (V_deg[0] | V_deg[1]) & G; if (V01) { auto fv = V01 & -V01; int v = ctz(fv); auto Nv = edges[v] & G; delete_V(G, Nv); vertices[idx] = v; int ret = 1 + mis3(G ^ (Nv | fv), idx + 1); insert_V(G, Nv); return ret; } // d(v) >= 3 const u128 V2 = V_deg[2] & G; if (V2 != G) { auto p = max_deg_vertex(G, V2, 3); auto v = p.first; auto fv = u128(1) << v; if (p.second == true) { vertices[idx++] = v; return 1; } else { int vertices_back[N_MAX]; // G \ v delete_v(G, v); int ret = mis3(G ^ fv, idx); copy(vertices + idx, vertices + idx + ret, vertices_back); insert_v(G, v); // G \ N(v) auto Nv = edges[v] & G; delete_V(G, Nv); vertices[idx] = v; int ret2 = 1 + mis3(G ^ (Nv | fv), idx + 1); insert_V(G, Nv); if (ret > ret2) { copy(vertices_back, vertices_back + ret, vertices + idx); } else { ret = ret2; } return ret; } } // Delta(G) = delta(G) = 2 int ret = 0; while (G) { auto fv = G & -G; int cycle_len = 0; for (; fv; ++cycle_len) { int v = ctz(fv); G ^= fv; fv = edges[v] & G; fv &= -fv; if (cycle_len & 1) vertices[idx++] = v; } ret += cycle_len / 2; } return ret; } struct Rand { Rand(u32 seed) : x(seed) {} u32 next() { return x = u64(x) * 12345 % 1000003; } u32 x; }; int gene_graph(int S) { auto gene = Rand(S); int N = gene.next() % N_MAX + 2; int P = gene.next(); // fprintf(stderr, "N: %u, P: %u\n", N, P); rep(i, N) { degs[i] = V_deg[i] = edges[i] = 0; } rep(i, N) rep(j, i + 1, N) { int X = gene.next(); if (X >= P) { edges[i] |= u128(1) << j; degs[i]++; edges[j] |= u128(1) << i; degs[j]++; // fprintf(stderr, "S: %u, E: %u <-> %u (%u)\n", S, i, j, X); } } rep(i, N) V_deg[degs[i]] |= u128(1) << i; return N; } void solve() { int S; // clock_t worst = 0; while (~scanf("%d", &S)) { int N = gene_graph(S); auto G = (u128(1) << N) - 1; // clock_t beg = clock(); int len = mis3(G); // clock_t end = clock(); // if (end - beg > worst) { // worst = end - beg; // printf("%u: %d %.3f\n", S, pop_count(G), double(worst) / CLOCKS_PER_SEC); // } if (len == pop_count(G)) { puts("-1"); } else { printf("%u\n", len + 1); printf("%u", vertices[0] + 1); rep(i, 1, len) printf(" %u", vertices[i] + 1); puts(""); } } } int main() { clock_t beg = clock(); solve(); clock_t end = clock(); fprintf(stderr, "%.3f sec\n", double(end - beg) / CLOCKS_PER_SEC); return 0; }