結果

問題 No.2792 Security Cameras on Young Diagram
ユーザー fuppy_kyoprofuppy_kyopro
提出日時 2024-06-21 21:35:59
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 29 ms / 2,000 ms
コード長 19,526 bytes
コンパイル時間 2,443 ms
コンパイル使用メモリ 209,724 KB
実行使用メモリ 12,572 KB
最終ジャッジ日時 2024-06-24 18:44:16
合計ジャッジ時間 3,641 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 21
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

/*
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
//*/
// #include <atcoder/all>
#include <bits/stdc++.h>
using namespace std;
// using namespace atcoder;
// #define _GLIBCXX_DEBUG
#define DEBUG(x) cerr << #x << ": " << x << endl;
#define DEBUG_VEC(v) \
cerr << #v << ":"; \
for (int iiiiiiii = 0; iiiiiiii < v.size(); iiiiiiii++) \
cerr << " " << v[iiiiiiii]; \
cerr << endl;
#define DEBUG_MAT(v) \
cerr << #v << endl; \
for (int iv = 0; iv < v.size(); iv++) { \
for (int jv = 0; jv < v[iv].size(); jv++) { \
cerr << v[iv][jv] << " "; \
} \
cerr << endl; \
}
typedef long long ll;
// #define int ll
#define vi vector<int>
#define vl vector<ll>
#define vii vector<vector<int>>
#define vll vector<vector<ll>>
#define pii pair<int, int>
#define pis pair<int, string>
#define psi pair<string, int>
#define pll pair<ll, ll>
template <class S, class T>
pair<S, T> operator+(const pair<S, T> &s, const pair<S, T> &t) {
return pair<S, T>(s.first + t.first, s.second + t.second);
}
template <class S, class T>
pair<S, T> operator-(const pair<S, T> &s, const pair<S, T> &t) { return pair<S, T>(s.first - t.first, s.second - t.second); }
template <class S, class T>
ostream &operator<<(ostream &os, pair<S, T> p) {
os << "(" << p.first << ", " << p.second << ")";
return os;
}
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
#define rep1(i, n) for (int i = 1; i <= (int)(n); i++)
#define rrep(i, n) for (int i = (int)(n) - 1; i >= 0; i--)
#define rrep1(i, n) for (int i = (int)(n); i > 0; i--)
#define REP(i, a, b) for (int i = a; i < b; i++)
#define in(x, a, b) (a <= x && x < b)
#define all(c) c.begin(), c.end()
void YES(bool t = true) {
cout << (t ? "YES" : "NO") << endl;
}
void Yes(bool t = true) { cout << (t ? "Yes" : "No") << endl; }
void yes(bool t = true) { cout << (t ? "yes" : "no") << endl; }
void NO(bool t = true) { cout << (t ? "NO" : "YES") << endl; }
void No(bool t = true) { cout << (t ? "No" : "Yes") << endl; }
void no(bool t = true) { cout << (t ? "no" : "yes") << endl; }
template <class T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T &a, const T &b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
template <class T>
T ceil_div(T a, T b) {
return (a + b - 1) / b;
}
#define UNIQUE(v) v.erase(std::unique(v.begin(), v.end()), v.end());
const ll inf = 1000000001;
const ll INF = (ll)1e18 + 1;
const long double pi = 3.1415926535897932384626433832795028841971L;
int popcount(ll t) { return __builtin_popcountll(t); }
vector<int> gen_perm(int n) {
vector<int> ret(n);
iota(all(ret), 0);
return ret;
}
// int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
// int dx2[8] = { 1,1,0,-1,-1,-1,0,1 }, dy2[8] = { 0,1,1,1,0,-1,-1,-1 };
vi dx = {0, 0, -1, 1}, dy = {-1, 1, 0, 0};
vi dx2 = {1, 1, 0, -1, -1, -1, 0, 1}, dy2 = {0, 1, 1, 1, 0, -1, -1, -1};
struct Setup_io {
Setup_io() {
ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cout << fixed << setprecision(25);
cerr << fixed << setprecision(25);
}
} setup_io;
// constexpr ll MOD = 1000000007;
constexpr ll MOD = 998244353;
// #define mp make_pair
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <utility>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
struct barrett {
unsigned int _m;
unsigned long long im;
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0)
d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n>
constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0) m0 += b / s;
return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0)
x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m>
constexpr int primitive_root = primitive_root_constexpr(m);
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T>
using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T>
using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T>
using is_modint = std::is_base_of<modint_base, T>;
template <class T>
using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)> * = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T> * = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T> * = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint &operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint &operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint &operator+=(const mint &rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint &operator-=(const mint &rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint &operator*=(const mint &rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint &lhs, const mint &rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint &lhs, const mint &rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint &lhs, const mint &rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint &lhs, const mint &rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint &lhs, const mint &rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint &lhs, const mint &rhs) {
return lhs._v != rhs._v;
}
friend ostream &operator<<(ostream &os, const mint &p) { return os << p.val(); }
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id>
struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T> * = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T> * = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint &operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint &operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint &operator+=(const mint &rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint &operator-=(const mint &rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint &operator*=(const mint &rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint &lhs, const mint &rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint &lhs, const mint &rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint &lhs, const mint &rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint &lhs, const mint &rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint &lhs, const mint &rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint &lhs, const mint &rhs) {
return lhs._v != rhs._v;
}
friend ostream &operator<<(ostream &os, const mint &p) { return os << p.val(); }
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id>
internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class>
struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
using namespace atcoder;
using mint = modint998244353;
const int MAXN = 555555;
vl fact(MAXN);
vl rfact(MAXN);
ll mod_pow(ll x, ll p, ll M = MOD) {
if (p < 0) {
x = mod_pow(x, M - 2, M);
p = -p;
}
x %= M;
ll a = 1;
while (p) {
if (p % 2)
a = a * x % M;
x = x * x % M;
p /= 2;
}
return a;
}
ll mod_inverse(ll a, ll M = MOD) {
return mod_pow(a, M - 2, M);
}
void set_fact(ll n, ll M = MOD) {
fact[0] = 1;
for (ll i = 1; i <= n; i++) {
fact[i] = i * fact[i - 1] % M;
}
rfact[n] = mod_inverse(fact[n], M);
for (ll i = n - 1; i >= 0; i--) {
rfact[i] = (i + 1) * rfact[i + 1] % M;
}
}
// http://drken1215.hatenablog.com/entry/2018/06/08/210000
ll nCr(ll n, ll r, ll M = MOD) {
if (r > n) return 0;
assert(fact[2] == 2);
ll ret = fact[n];
if (rfact[r] == 0) {
rfact[r] = mod_inverse(fact[r], M);
}
ret = (ret * rfact[r]) % M;
if (rfact[n - r] == 0) {
rfact[n - r] = mod_inverse(fact[n - r], M);
}
ret = (ret * rfact[n - r]) % M;
return ret;
}
ll nHr(ll n, ll r) {
return nCr(n + r - 1, r);
}
signed main() {
int n;
cin >> n;
vi a(n);
rep(i, n) {
cin >> a[i];
}
a.push_back(0);
set_fact(211111);
mint ans = 0;
for (int i = 0; i < n; i++) {
for (int x = a[i] - 1; x >= a[i + 1]; x--) {
ans += nCr(i + x, i);
}
ans += nCr(i + a[i] - 1, i);
}
cout << ans << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0