結果

問題 No.2792 Security Cameras on Young Diagram
ユーザー iiljjiiljj
提出日時 2024-06-21 23:10:36
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 16,303 bytes
コンパイル時間 1,886 ms
コンパイル使用メモリ 174,368 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-06-21 23:10:40
合計ジャッジ時間 3,177 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 AC 2 ms
6,944 KB
testcase_22 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

/* #region Head */

// #include <bits/stdc++.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert> // assert.h
#include <cmath>   // math.h
#include <cstring>
#include <ctime>
#include <deque>
#include <fstream>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
using namespace std;

using ll = long long;
using ull = unsigned long long;
using ld = long double;
using pll = pair<ll, ll>;
template <class T> using vc = vector<T>;
template <class T> using vvc = vc<vc<T>>;
using vll = vc<ll>;
using vvll = vvc<ll>;
using vld = vc<ld>;
using vvld = vvc<ld>;
using vs = vc<string>;
using vvs = vvc<string>;
template <class T, class U> using um = unordered_map<T, U>;
template <class T> using pq = priority_queue<T>;
template <class T> using pqa = priority_queue<T, vc<T>, greater<T>>;
template <class T> using us = unordered_set<T>;

#define TREP(T, i, m, n) for (T i = (m), i##_len = (T)(n); i < i##_len; ++(i))
#define TREPM(T, i, m, n) for (T i = (m), i##_max = (T)(n); i <= i##_max; ++(i))
#define TREPR(T, i, m, n) for (T i = (m), i##_min = (T)(n); i >= i##_min; --(i))
#define TREPD(T, i, m, n, d) for (T i = (m), i##_len = (T)(n); i < i##_len; i += (d))
#define TREPMD(T, i, m, n, d) for (T i = (m), i##_max = (T)(n); i <= i##_max; i += (d))

#define REP(i, m, n) for (ll i = (m), i##_len = (ll)(n); i < i##_len; ++(i))
#define REPM(i, m, n) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; ++(i))
#define REPR(i, m, n) for (ll i = (m), i##_min = (ll)(n); i >= i##_min; --(i))
#define REPD(i, m, n, d) for (ll i = (m), i##_len = (ll)(n); i < i##_len; i += (d))
#define REPMD(i, m, n, d) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; i += (d))
#define REPI(itr, ds) for (auto itr = ds.begin(); itr != ds.end(); itr++)
#define REPIR(itr, ds) for (auto itr = ds.rbegin(); itr != ds.rend(); itr++)
#define ALL(x) begin(x), end(x)
#define SIZE(x) ((ll)(x).size())
#define ISIZE(x) ((int)(x).size())
#define PERM(c)                                                                                                        \
    sort(ALL(c));                                                                                                      \
    for (bool c##p = 1; c##p; c##p = next_permutation(ALL(c)))
#define UNIQ(v) v.erase(unique(ALL(v)), v.end());
#define CEIL(a, b) (((a) + (b)-1) / (b))

#define endl '\n'

constexpr ll INF = 1'010'000'000'000'000'017LL;
constexpr int IINF = 1'000'000'007LL;
// constexpr ll MOD = 1'000'000'007LL; // 1e9 + 7
constexpr ll MOD = 998244353;
constexpr ld EPS = 1e-12;
constexpr ld PI = 3.14159265358979323846;

// 前方宣言
template <typename T> istream &operator>>(istream &is, vc<T> &vec);
template <typename T> ostream &operator<<(ostream &os, const vc<T> &vec);
template <typename T> ostream &operator>>(ostream &os, const vc<T> &vec);
template <typename T, size_t _Nm> istream &operator>>(istream &is, array<T, _Nm> &arr);
template <typename T, size_t _Nm> ostream &operator<<(ostream &os, const array<T, _Nm> &arr);
template <typename T, size_t _Nm> ostream &operator>>(ostream &os, const array<T, _Nm> &arr);
template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &pair_var);
template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &pair_var);
template <class T> ostream &out_iter(ostream &os, const T &map_var);
template <typename T, typename U> ostream &operator<<(ostream &os, const map<T, U> &map_var);
template <typename T, typename U> ostream &operator<<(ostream &os, const um<T, U> &map_var);
template <typename T> ostream &operator<<(ostream &os, const set<T> &set_var);
template <typename T> ostream &operator<<(ostream &os, const us<T> &set_var);
template <typename T> ostream &operator<<(ostream &os, const pq<T> &pq_var);
template <typename T> ostream &operator<<(ostream &os, const queue<T> &queue_var);
template <typename T> ostream &operator<<(ostream &os, const stack<T> &stk_var);

template <typename T> istream &operator>>(istream &is, vc<T> &vec) { // vector 入力
    for (T &x : vec)
        is >> x;
    return is;
}
template <typename T> ostream &operator<<(ostream &os, const vc<T> &vec) { // vector 出力 (for dump)
    os << "{";
    REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "" : ", ");
    os << "}";
    return os;
}
template <typename T> ostream &operator>>(ostream &os, const vc<T> &vec) { // vector 出力 (inline)
    REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "\n" : " ");
    return os;
}

template <typename T, size_t _Nm> istream &operator>>(istream &is, array<T, _Nm> &arr) { // array 入力
    REP(i, 0, SIZE(arr)) is >> arr[i];
    return is;
}
template <typename T, size_t _Nm> ostream &operator<<(ostream &os, const array<T, _Nm> &arr) { // array 出力 (for dump)
    os << "{";
    REP(i, 0, SIZE(arr)) os << arr[i] << (i == i_len - 1 ? "" : ", ");
    os << "}";
    return os;
}

template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &pair_var) { // pair 入力
    is >> pair_var.first >> pair_var.second;
    return is;
}
template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &pair_var) { // pair 出力
    os << "(" << pair_var.first << ", " << pair_var.second << ")";
    return os;
}

// map, um, set, us 出力
template <class T> ostream &out_iter(ostream &os, const T &map_var) {
    os << "{";
    REPI(itr, map_var) {
        os << *itr;
        auto itrcp = itr;
        if (++itrcp != map_var.end()) os << ", ";
    }
    return os << "}";
}
template <typename T, typename U> ostream &operator<<(ostream &os, const map<T, U> &map_var) {
    return out_iter(os, map_var);
}
template <typename T, typename U> ostream &operator<<(ostream &os, const um<T, U> &map_var) {
    os << "{";
    REPI(itr, map_var) {
        auto [key, value] = *itr;
        os << "(" << key << ", " << value << ")";
        auto itrcp = itr;
        if (++itrcp != map_var.end()) os << ", ";
    }
    os << "}";
    return os;
}
template <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) { return out_iter(os, set_var); }
template <typename T> ostream &operator<<(ostream &os, const us<T> &set_var) { return out_iter(os, set_var); }
template <typename T> ostream &operator<<(ostream &os, const pq<T> &pq_var) {
    pq<T> pq_cp(pq_var);
    os << "{";
    if (!pq_cp.empty()) {
        os << pq_cp.top(), pq_cp.pop();
        while (!pq_cp.empty())
            os << ", " << pq_cp.top(), pq_cp.pop();
    }
    return os << "}";
}

// tuple 出力
template <size_t N = 0, bool end_line = false, typename... Args> ostream &operator<<(ostream &os, tuple<Args...> &a) {
    if constexpr (N < std::tuple_size_v<tuple<Args...>>) {
        os << get<N>(a);
        if constexpr (N + 1 < std::tuple_size_v<tuple<Args...>>) {
            os << ' ';
        } else if constexpr (end_line) {
            os << '\n';
        }
        return operator<< <N + 1, end_line>(os, a);
    }
    return os;
}
template <typename... Args> void print_tuple(tuple<Args...> &a) { operator<< <0, true>(std::cout, a); }

void pprint() { std::cout << endl; }
template <class Head, class... Tail> void pprint(Head &&head, Tail &&...tail) {
    std::cout << head;
    if (sizeof...(Tail) > 0) std::cout << ' ';
    pprint(move(tail)...);
}

// dump
#define DUMPOUT cerr
void dump_func() { DUMPOUT << endl; }
template <class Head, class... Tail> void dump_func(Head &&head, Tail &&...tail) {
    DUMPOUT << head;
    if (sizeof...(Tail) > 0) DUMPOUT << ", ";
    dump_func(move(tail)...);
}

// chmax (更新「される」かもしれない値が前)
template <typename T, typename U, typename Comp = less<>> bool chmax(T &xmax, const U &x, Comp comp = {}) {
    if (comp(xmax, x)) {
        xmax = x;
        return true;
    }
    return false;
}

// chmin (更新「される」かもしれない値が前)
template <typename T, typename U, typename Comp = less<>> bool chmin(T &xmin, const U &x, Comp comp = {}) {
    if (comp(x, xmin)) {
        xmin = x;
        return true;
    }
    return false;
}

// ローカル用
#ifndef ONLINE_JUDGE
#define DEBUG_
#endif

#ifndef MYLOCAL
#undef DEBUG_
#endif

#ifdef DEBUG_
#define DEB
#define dump(...)                                                                                                      \
    DUMPOUT << "  " << string(#__VA_ARGS__) << ": "                                                                    \
            << "[" << to_string(__LINE__) << ":" << __FUNCTION__ << "]" << endl                                        \
            << "    ",                                                                                                 \
        dump_func(__VA_ARGS__)
#else
#define DEB if (false)
#define dump(...)
#endif

#define VAR(type, ...)                                                                                                 \
    type __VA_ARGS__;                                                                                                  \
    assert((std::cin >> __VA_ARGS__));

template <typename T> istream &operator,(istream &is, T &rhs) { return is >> rhs; }
template <typename T> ostream &operator,(ostream &os, const T &rhs) { return os << ' ' << rhs; }

struct AtCoderInitialize {
    static constexpr int IOS_PREC = 15;
    static constexpr bool AUTOFLUSH = false;
    AtCoderInitialize() {
        ios_base::sync_with_stdio(false), std::cin.tie(nullptr), std::cout.tie(nullptr);
        std::cout << fixed << setprecision(IOS_PREC);
        if (AUTOFLUSH) std::cout << unitbuf;
    }
} ATCODER_INITIALIZE;

void Yn(bool p) { std::cout << (p ? "Yes" : "No") << endl; }
void YN(bool p) { std::cout << (p ? "YES" : "NO") << endl; }

template <typename T> constexpr void operator--(vc<T> &v, int) noexcept {
    for (int i = 0; i < ISIZE(v); ++i)
        v[i]--;
}
template <typename T> constexpr void operator++(vc<T> &v, int) noexcept {
    for (int i = 0; i < ISIZE(v); ++i)
        v[i]++;
}

/* #endregion */

// #include <atcoder/all>
// using namespace atcoder;

/* #region mint */

// 自動で MOD を取る整数
struct mint {
    ll x;
    constexpr mint(ll x = 0) : x((x % MOD + MOD) % MOD) {}
    constexpr mint &operator+=(const mint &a) {
        if ((x += a.x) >= MOD) x -= MOD;
        return *this;
    }
    constexpr mint &operator-=(const mint &a) {
        if ((x += MOD - a.x) >= MOD) x -= MOD;
        return *this;
    }
    constexpr mint &operator*=(const mint &a) {
        (x *= a.x) %= MOD;
        return *this;
    }
    constexpr mint operator+(const mint &a) const {
        mint res(*this);
        return res += a;
    }
    constexpr mint operator-(const mint &a) const {
        mint res(*this);
        return res -= a;
    }
    constexpr mint operator*(const mint &a) const {
        mint res(*this);
        return res *= a;
    }
    // O(log(t))
    constexpr mint pow_rec(ll t) const {
        if (!t) return 1;
        mint a = pow(t >> 1); // ⌊t/2⌋ 乗
        a *= a;               // ⌊t/2⌋*2 乗
        if (t & 1)            // ⌊t/2⌋*2 == t-1 のとき
            a *= *this;       // ⌊t/2⌋*2+1 乗 => t 乗
        return a;
    }

    constexpr mint pow(ll t) const {
        mint a(*this);
        mint res = 1;
        while (t) {
            if (t & 1) res *= a;
            t >>= 1, a *= a;
        }
        return res;
    }

    // for prime mod
    constexpr mint inv_prime() const {
        return pow(MOD - 2); // オイラーの定理から, x^(-1) ≡ x^(p-2)
    }
    constexpr mint inv() const {
        ll a = this->x, b = MOD, u = 1, v = 0, t = 0;
        mint res;
        while (b) {
            t = a / b;
            a -= t * b;
            swap(a, b);
            u -= t * v;
            swap(u, v);
        }
        if (u < 0) u += MOD;
        res = u;
        return res;
    }
    constexpr mint &operator/=(const mint &a) { return (*this) *= a.inv(); }
    constexpr mint operator/(const mint &a) const {
        mint res(*this);
        return res /= a;
    }
    constexpr bool operator==(const mint &a) const { return this->x == a.x; }
    constexpr bool operator==(const ll a) const { return this->x == a; }
    constexpr bool operator!=(const mint &a) const { return this->x != a.x; }
    constexpr bool operator!=(const ll a) const { return this->x != a; }

    mint operator+() const { return *this; }
    mint operator-() const { return *this * (-1); }

    // mint 入力
    friend istream &operator>>(istream &is, mint &x) {
        is >> x.x;
        return is;
    }

    // mint 出力
    friend ostream &operator<<(ostream &os, const mint x) {
        os << x.x;
        return os;
    }
};

/* #endregion */

/* #region Comb1 */

// 二項係数計算用クラス.1 <= k <= n <= 1e7 程度用.
class Combinaion {
  private:
    /* テーブルの大きさの既定値.(MAX)! まで計算できる. */
    static constexpr ll MAX = 1e6 + 11;
    /* 実際のテーブルの大きさ. */
    ll max;
    /* 階乗を格納するテーブル.fac[n] := n! % MOD. */
    vc<mint> fac;
    /* 階乗の逆元を格納するテーブル.finv[n] := (fac[n])^(-1). */
    vc<mint> finv;

    /* 各種テーブルを初期化する. */
    void init(int n) {
        max = n;
        fac[0] = fac[1] = 1;
        finv[0] = finv[1] = 1;
        REPM(i, 2, n) fac[i] = fac[i - 1] * i;
        finv[n] = fac[n].inv();
        REPR(i, n, 2) finv[i - 1] = finv[i] * i;
    }

  public:
    /* コンストラクタ. */
    Combinaion(int n = MAX) : fac(n + 1), finv(n + 1) { init(n); }

    /* 二項係数 nCk % MOD を計算する. */
    mint operator()(ll n, ll k) const {
        assert(n <= max); // ここで詰まると RE
        assert(k <= max);
        if (n < k || n < 0 || k < 0) return 0;
        return fac[n] * finv[k] * finv[n - k];
    }

    mint perm(ll n, ll k) { return fac[n] * finv[n - k]; }

    // 重複組み合わせ nHr % MOD を計算する
    mint homogeneous(ll n, ll r) { return (*this)(n + r - 1, r); }

    // n! % MOD を返す
    mint fact(ll n) { return fac[n]; }

    // (1/n!) % MOD
    mint factinv(ll n) { return finv[n]; }
};

/* #endregion */

// Problem
void solve() {
    VAR(ll, n);
    vll a(n);
    cin >> a;
    // a.push_back(0);

    // 左上から DP すればよい?と思ったけど 10^10 マス存在するかもしれない.
    // 1箇所からの遷移は,行を消費するか列を消費するかの2通り.
    // ある行に着目すると,「何列目まで↓を詰めるか?(そのすぐ後は→で確定)」という問題になる.
    // 既に↓を入れた列は,もう使えないので,→を入れた列が,次の始点になる.

    // dp[i][j] := i行目まで見て,次の行でj列目から考えるような場合の数
    // とすると,あるマスまで辿り着く経路数は,右と下にしか移動できない制約下での移動経路の総数と似ている.
    // 似ているが,横方向移動はできないので,(i+1)回で合計j個移動すると考えて
    // jを(i+1)個に分割することのできるパターン数を考える.

    Combinaion c(a[0] + n + 111);
    mint ans = 0;
    ll prev = a[0];
    REP(i, 0, n) {
        if (i == 0) {
            ans += c(i + a[i], 0);
            dump(i, c(i + a[i], 0));
        } else {
            //
            REPR(j, prev - 1, a[i] + 1) {
                ans += c(i - 1 + j, i - 1); //
                dump(i, j, c(i - 1 + j, i - 1));
            }
            if (i < n - 1 and a[i + 1] == a[i]) {
                // 次以降でやる
            } else {
                ans += c(i + a[i], i);
                dump(i, c(i + a[i], i));
            }
        }
        if (i == n - 1) {
            REPR(j, a[i] - 1, 0) {
                ans += c(i + j, i); //
                dump(i, j, c(i + j, i));
            }
        } else if (a[i + 1] != a[i]) {
            prev = a[i];
        }
    }
    pprint(ans);
}

// entry point
int main() {
    solve();
    return 0;
}
0