結果
| 問題 |
No.2792 Security Cameras on Young Diagram
|
| コンテスト | |
| ユーザー |
mattu34
|
| 提出日時 | 2024-06-21 23:50:11 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 397 ms / 2,000 ms |
| コード長 | 2,809 bytes |
| コンパイル時間 | 448 ms |
| コンパイル使用メモリ | 82,432 KB |
| 実行使用メモリ | 140,928 KB |
| 最終ジャッジ日時 | 2024-06-24 18:48:19 |
| 合計ジャッジ時間 | 10,326 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 21 |
ソースコード
from collections import *
import sys
import heapq
import bisect
import itertools
from functools import lru_cache
from types import GeneratorType
from fractions import Fraction
import math
import copy
import random
# sys.setrecursionlimit(int(1e7))
# @lru_cache(maxsize=None) # CPython特化
# @bootstrap # PyPy特化(こっちのほうが速い) yield dfs(), yield Noneを忘れずに
def bootstrap(f, stack=[]): # yield
def wrappedfunc(*args, **kwargs):
if stack:
return f(*args, **kwargs)
else:
to = f(*args, **kwargs)
while True:
if type(to) is GeneratorType:
stack.append(to)
to = next(to)
else:
stack.pop()
if not stack:
break
to = stack[-1].send(to)
return to
return wrappedfunc
dxdy1 = ((0, 1), (0, -1), (1, 0), (-1, 0)) # 上下右左
dxdy2 = (
(0, 1),
(0, -1),
(1, 0),
(-1, 0),
(1, 1),
(-1, -1),
(1, -1),
(-1, 1),
) # 8方向すべて
dxdy3 = ((0, 1), (1, 0)) # 右 or 下
dxdy4 = ((1, 1), (1, -1), (-1, 1), (-1, -1)) # 斜め
INF = float("inf")
_INF = 1 << 60
MOD = 998244353
mod = 998244353
MOD2 = 10**9 + 7
mod2 = 10**9 + 7
# memo : len([a,b,...,z])==26
# memo : 2^20 >= 10^6
# 小数の計算を避ける : x/y -> (x*big)//y ex:big=10**9
# @:小さい文字, ~:大きい文字,None: 空の文字列
# ユークリッドの互除法:gcd(x,y)=gcd(x,y-x)
# memo : d 桁以下の p 進表記を用いると p^d-1 以下のすべての
# 非負整数を表現することができる
# memo : (X,Y) -> (X+Y,X−Y) <=> 点を原点を中心に45度回転し、√2倍に拡大
# memo : (x,y)のx正から見た偏角をラジアンで(-πからπ]: math.atan2(y, x)
# memo : a < bのとき ⌊a⌋ ≦ ⌊b⌋
input = lambda: sys.stdin.readline().rstrip()
mi = lambda: map(int, input().split())
li = lambda: list(mi())
ii = lambda: int(input())
py = lambda: print("Yes")
pn = lambda: print("No")
pf = lambda: print("First")
ps = lambda: print("Second")
# 階乗 & 逆元計算
factorial = [1]
inverse = [1]
for i in range(1, 2 * 10**5 + 1):
factorial.append(factorial[-1] * i % MOD)
inverse.append(pow(factorial[-1], MOD - 2, MOD))
# 組み合わせ計算
def nCr(n, r):
if n < r or r < 0:
return 0
elif r == 0:
return 1
return factorial[n] * inverse[r] % MOD * inverse[n - r] % MOD
N = ii()
A = li()
cnt = defaultdict(int)
for a in A:
cnt[a] += 1
ans = 0
for i in range(N):
ans += nCr(i + A[i] - 1, i)
ans %= MOD
tmp = N
for x in range(1, 10**5 + 1):
ans += nCr(tmp + x - 2, x - 1)
ans %= MOD
tmp -= cnt[x]
if tmp == 0:
break
print(ans)
mattu34