結果

問題 No.235 めぐるはめぐる (5)
ユーザー ngtkana
提出日時 2024-06-24 02:44:23
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 1,963 ms / 10,000 ms
コード長 41,235 bytes
コンパイル時間 13,640 ms
コンパイル使用メモリ 393,412 KB
実行使用メモリ 50,792 KB
最終ジャッジ日時 2024-06-24 02:44:47
合計ジャッジ時間 22,121 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 3
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: unused import: `factorial::Factorial`
    --> src/main.rs:1044:13
     |
1044 |     pub use factorial::Factorial;
     |             ^^^^^^^^^^^^^^^^^^^^
     |
     = note: `#[warn(unused_imports)]` on by default

warning: unused import: `fourier::any_mod_fps_mul`
    --> src/main.rs:1045:13
     |
1045 |     pub use fourier::any_mod_fps_mul;
     |             ^^^^^^^^^^^^^^^^^^^^^^^^

warning: unused import: `fourier::fft`
    --> src/main.rs:1046:13
     |
1046 |     pub use fourier::fft;
     |             ^^^^^^^^^^^^

warning: unused import: `fourier::fps_mul`
    --> src/main.rs:1047:13
     |
1047 |     pub use fourier::fps_mul;
     |             ^^^^^^^^^^^^^^^^

warning: unused import: `fourier::ifft`
    --> src/main.rs:1048:13
     |
1048 |     pub use fourier::ifft;
     |             ^^^^^^^^^^^^^

ソースコード

diff #
プレゼンテーションモードにする

use lazy_segtree::LazySegtree;
use proconio::input;
use proconio::marker::Usize1;
type Fp = fp::Fp<1_000_000_007>;
fn main() {
input! {
n: usize,
sum: [usize; n],
coeff: [usize; n],
edges: [(Usize1, Usize1); n - 1],
q: usize,
}
let (hld, _g) = Hld::from_edges(0, &edges);
let mut values = vec![
Value {
coeff: fp!(0),
sum: fp!(0)
};
n
];
for (x, &i) in hld.index.iter().enumerate() {
values[i] = Value {
coeff: fp!(coeff[x]),
sum: fp!(sum[x]),
};
}
let mut lazy_segtree = LazySegtree::<O>::from_iter(values);
for _ in 0..q {
input! {
com: String,
}
match com.as_str() {
"0" => {
input! {
i: Usize1,
j: Usize1,
op: usize,
}
hld.visit_path_segments_including_lca_by_index(i, j, |i, j| {
lazy_segtree.range_apply(i..=j, &fp!(op));
});
}
"1" => {
input! {
i: Usize1,
j: Usize1,
}
let mut ans = fp!(0);
hld.visit_path_segments_including_lca_by_index(i, j, |i, j| {
ans += lazy_segtree.fold(i..=j).sum;
});
println!("{ans}");
}
_ => unreachable!(),
}
}
}
#[derive(Clone, Copy, Debug, PartialEq)]
struct Value {
coeff: Fp,
sum: Fp,
}
enum O {}
impl lazy_segtree::Op for O {
type Operator = Fp;
type Value = Value;
fn identity() -> Self::Value {
Value {
coeff: fp!(0),
sum: fp!(0),
}
}
fn op(lhs: &Self::Value, rhs: &Self::Value) -> Self::Value {
Value {
coeff: lhs.coeff + rhs.coeff,
sum: lhs.sum + rhs.sum,
}
}
fn apply(op: &Self::Operator, value: &Self::Value) -> Self::Value {
Value {
coeff: value.coeff,
sum: value.sum + op * value.coeff,
}
}
fn identity_op() -> Self::Operator {
fp!(0)
}
fn compose(op: &Self::Operator, other: &Self::Operator) -> Self::Operator {
op + other
}
}
pub struct Hld {
pub parent: Vec<usize>,
pub index: Vec<usize>,
pub head: Vec<usize>,
}
impl Hld {
pub fn from_short_parents(mut parent: Vec<usize>) -> (Self, Vec<Vec<usize>>) {
parent.insert(0, 0);
let mut g = vec![Vec::new(); parent.len()];
for (i, &p) in parent.iter().enumerate().skip(1) {
g[p].push(i);
}
(__build_hld(0, &mut g, parent), g)
}
pub fn from_edges(root: usize, edges: &[(usize, usize)]) -> (Self, Vec<Vec<usize>>) {
let mut g = vec![Vec::new(); edges.len() + 1];
for &(i, j) in edges {
g[i].push(j);
g[j].push(i);
}
let parent = __remove_parent(root, &mut g);
(__build_hld(root, &mut g, parent), g)
}
pub fn visit_path_segments_including_lca(
&self,
mut i: usize, // id
mut j: usize, // id
mut f: impl FnMut(usize, usize), // id
) {
while self.head[i] != self.head[j] {
if self.index[i] < self.index[j] {
f(self.head[j], j);
j = self.parent[self.head[j]];
} else {
f(self.head[i], i);
i = self.parent[self.head[i]];
}
}
if self.index[i] < self.index[j] {
f(i, j)
} else {
f(j, i)
}
}
pub fn visit_path_segments_including_lca_by_index(
&self,
i: usize, // id
j: usize, // id
mut f: impl FnMut(usize, usize), // index
) {
self.visit_path_segments_including_lca(i, j, |i, j| f(self.index[i], self.index[j]));
}
pub fn lca(&self, mut i: usize, mut j: usize) -> usize {
while self.head[i] != self.head[j] {
if self.index[i] < self.index[j] {
j = self.parent[self.head[j]];
} else {
i = self.parent[self.head[i]];
}
}
std::cmp::min_by_key(i, j, |&i| self.index[i])
}
}
fn __build_hld(root: usize, g: &mut [Vec<usize>], parent: Vec<usize>) -> Hld {
let n = g.len();
__heavy_first(0, g);
let mut index = vec![usize::MAX; n];
let mut head = vec![usize::MAX; n];
head[root] = root;
__head_and_index(0, &*g, &mut head, &mut index, &mut (0..));
Hld {
parent,
index,
head,
}
}
fn __head_and_index(
i: usize,
g: &[Vec<usize>],
head: &mut [usize],
index: &mut [usize],
current: &mut std::ops::RangeFrom<usize>,
) {
index[i] = current.next().unwrap();
for &j in &g[i] {
head[j] = if j == g[i][0] { head[i] } else { j };
__head_and_index(j, g, head, index, current);
}
}
fn __heavy_first(i: usize, g: &mut [Vec<usize>]) -> usize {
let mut max = 0;
let mut size = 1;
for e in 0..g[i].len() {
let csize = __heavy_first(g[i][e], g);
if max < csize {
max = csize;
g[i].swap(0, e);
}
size += csize;
}
size
}
fn __remove_parent(root: usize, g: &mut [Vec<usize>]) -> Vec<usize> {
let mut stack = vec![root];
let mut parent = vec![usize::MAX; g.len()];
parent[root] = root;
while let Some(i) = stack.pop() {
g[i].retain(|&j| parent[i] != j);
for &j in &g[i] {
parent[j] = i;
stack.push(j);
}
}
parent
}
// link_cut_tree {{{
// https://ngtkana.github.io/ac-adapter-rs/link_cut_tree/index.html
#[allow(dead_code)]
mod link_cut_tree {
mod base {
#[doc(hidden)]
pub trait OpBase {
type Value: Clone;
type InternalValue: Clone;
fn identity() -> Self::InternalValue;
fn mul(lhs: &Self::InternalValue, rhs: &Self::InternalValue) -> Self::InternalValue;
fn into_front(value: Self::InternalValue) -> Self::Value;
fn from_front(value: Self::Value) -> Self::InternalValue;
fn rev(value: &mut Self::InternalValue);
}
pub struct LinkCutTreeBase<O: OpBase> {
nodes: Vec<Node<O>>,
}
impl<O: OpBase> LinkCutTreeBase<O> {
pub fn new(n: usize) -> Self {
Self {
nodes: (0..n)
.map(|id| Node {
id,
parent: std::ptr::null_mut(),
left: std::ptr::null_mut(),
right: std::ptr::null_mut(),
rev: false,
value: O::identity(),
acc: O::identity(),
})
.collect(),
}
}
pub fn from_values(values: impl IntoIterator<Item = O::Value>) -> Self {
Self {
nodes: values
.into_iter()
.map(O::from_front)
.enumerate()
.map(|(id, value)| Node {
id,
parent: std::ptr::null_mut(),
left: std::ptr::null_mut(),
right: std::ptr::null_mut(),
rev: false,
value: value.clone(),
acc: value,
})
.collect(),
}
}
pub fn link(&mut self, p: usize, c: usize) {
unsafe {
let c = std::ptr::addr_of_mut!(self.nodes[c]);
let p = std::ptr::addr_of_mut!(self.nodes[p]);
expose(c);
assert!((*c).left.is_null(), "c = {} is not a root", (*c).id);
expose(p);
assert!(
(*c).parent.is_null(),
"c = {} and p = {} are already connected",
(*c).id,
(*p).id
);
(*c).parent = p;
(*p).right = c;
update(p);
}
}
pub fn undirected_link(&mut self, i: usize, j: usize) -> bool {
if self.undirected_is_connected(i, j) {
return false;
}
self.evert(j);
self.link(i, j);
true
}
pub fn cut(&mut self, x: usize) -> Option<usize> {
unsafe {
let x = std::ptr::addr_of_mut!(self.nodes[x]);
expose(x);
let p = (*x).left;
(*x).left = std::ptr::null_mut();
let ans = p.as_ref().map(|p| p.id);
if !p.is_null() {
(*p).parent = std::ptr::null_mut();
}
update(x);
ans
}
}
pub fn undirected_cut(&mut self, i: usize, j: usize) -> bool {
if !self.undirected_has_edge(i, j) {
return false;
}
self.evert(i);
self.cut(j);
true
}
pub fn evert(&mut self, x: usize) {
unsafe {
let x = std::ptr::addr_of_mut!(self.nodes[x]);
expose(x);
rev(x);
push(x);
}
}
pub fn undirected_has_edge(&mut self, x: usize, y: usize) -> bool {
self.parent(x) == Some(y) || self.parent(y) == Some(x)
}
pub fn undirected_is_connected(&mut self, x: usize, y: usize) -> bool {
if x == y {
return true;
}
unsafe {
let x = std::ptr::addr_of_mut!(self.nodes[x]);
let y = std::ptr::addr_of_mut!(self.nodes[y]);
expose(x);
expose(y);
!(*x).parent.is_null()
}
}
pub fn lca(&mut self, x: usize, y: usize) -> Option<usize> {
if x == y {
return Some(x);
}
unsafe {
let x = std::ptr::addr_of_mut!(self.nodes[x]);
let y = std::ptr::addr_of_mut!(self.nodes[y]);
expose(x);
let lca = expose(y);
if (*x).parent.is_null() {
None
} else {
Some((*lca).id)
}
}
}
pub fn set(&mut self, x: usize, mut f: impl FnMut(O::Value) -> O::Value) {
unsafe {
let x = std::ptr::addr_of_mut!(self.nodes[x]);
expose(x);
(*x).value = O::from_front(f(O::into_front((*x).value.clone())));
update(x);
}
}
pub fn fold(&mut self, x: usize) -> O::Value {
unsafe {
let x = std::ptr::addr_of_mut!(self.nodes[x]);
expose(x);
O::into_front((*x).acc.clone())
}
}
pub fn undirected_fold(&mut self, i: usize, j: usize) -> Option<O::Value> {
if !self.undirected_is_connected(i, j) {
return None;
}
self.evert(i);
Some(self.fold(j))
}
pub fn parent(&mut self, x: usize) -> Option<usize> {
unsafe {
let x = std::ptr::addr_of_mut!(self.nodes[x]);
expose(x);
let mut p = (*x).left.as_mut()?;
while let Some(next) = p.right.as_mut() {
p = next;
}
splay(p);
Some(p.id)
}
}
}
#[derive(Clone, Copy)]
struct Node<O: OpBase> {
id: usize,
parent: *mut Self,
left: *mut Self,
right: *mut Self,
rev: bool,
value: O::InternalValue,
acc: O::InternalValue,
}
unsafe fn is_splay_root<O: OpBase>(x: *mut Node<O>) -> bool {
let x = &*x;
let p = match x.parent.as_ref() {
Some(p) => p,
None => return true,
};
!std::ptr::eq(x, p.left) && !std::ptr::eq(x, p.right)
}
unsafe fn push<O: OpBase>(x: *mut Node<O>) {
let x = &mut *x;
if x.rev {
if let Some(l) = x.left.as_mut() {
rev(l);
}
if let Some(r) = x.right.as_mut() {
rev(r);
}
x.rev = false;
}
}
unsafe fn update<O: OpBase>(x: *mut Node<O>) {
let x = &mut *x;
x.acc = x.value.clone();
if !x.left.is_null() {
x.acc = O::mul(&(*x.left).acc, &x.acc);
}
if !x.right.is_null() {
x.acc = O::mul(&x.acc, &(*x.right).acc);
}
}
unsafe fn rev<O: OpBase>(x: *mut Node<O>) {
let x = &mut *x;
std::mem::swap(&mut x.left, &mut x.right);
O::rev(&mut x.acc);
x.rev ^= true;
}
unsafe fn expose<O: OpBase>(x: *mut Node<O>) -> *mut Node<O> {
let mut last = std::ptr::null_mut();
let mut current = x;
while !current.is_null() {
splay(current);
(*current).right = last;
update(current);
last = current;
current = (*current).parent;
}
splay(x);
last
}
unsafe fn splay<O: OpBase>(x: *mut Node<O>) {
let x = &mut *x;
push(x);
while !is_splay_root(x) {
let p = &mut *x.parent;
if is_splay_root(p) {
push(p);
push(x);
if std::ptr::eq(p.left, x) {
rotate_right(p);
} else {
rotate_left(p);
}
} else {
let g = &mut *p.parent;
push(g);
push(p);
push(x);
#[allow(clippy::collapsible_else_if)]
if std::ptr::eq(p.left, x) {
if std::ptr::eq(g.left, p) {
rotate_right(g);
rotate_right(p);
} else {
rotate_right(p);
rotate_left(g);
}
} else {
if std::ptr::eq(g.left, p) {
rotate_left(p);
rotate_right(g);
} else {
rotate_left(g);
rotate_left(p);
}
}
}
}
}
unsafe fn rotate_left<O: OpBase>(l: *mut Node<O>) {
let l = &mut *l;
let r = &mut *l.right;
let p = l.parent;
let c = r.left;
l.right = c;
if !c.is_null() {
(*c).parent = l;
}
r.left = l;
l.parent = r;
r.parent = p;
update(l);
update(r);
if !p.is_null() {
if std::ptr::eq((*p).left, l) {
(*p).left = r;
} else if std::ptr::eq((*p).right, l) {
(*p).right = r;
}
update(&mut *p);
}
}
unsafe fn rotate_right<O: OpBase>(r: *mut Node<O>) {
let r = &mut *r;
let l = &mut *r.left;
let p = r.parent;
let c = l.right;
r.left = c;
if !c.is_null() {
(*c).parent = r;
}
l.right = r;
r.parent = l;
l.parent = p;
update(r);
update(l);
if !p.is_null() {
if std::ptr::eq((*p).left, r) {
(*p).left = l;
} else if std::ptr::eq((*p).right, r) {
(*p).right = l;
}
update(&mut *p);
}
}
}
pub use base::LinkCutTreeBase;
use base::OpBase;
pub trait Op {
type Value: Clone;
fn identity() -> Self::Value;
fn mul(lhs: &Self::Value, rhs: &Self::Value) -> Self::Value;
}
impl OpBase for () {
type InternalValue = ();
type Value = ();
fn identity() -> Self::InternalValue {}
fn mul(_lhs: &Self::InternalValue, _rhs: &Self::InternalValue) -> Self::InternalValue {}
fn rev(_value: &mut Self::InternalValue) {}
fn into_front(_value: Self::InternalValue) {}
fn from_front(_value: Self::Value) -> Self::InternalValue {}
}
pub type LinkCutTree = LinkCutTreeBase<()>;
pub type CommutLinkCutTree<T> = LinkCutTreeBase<Commut<T>>;
#[doc(hidden)]
pub struct Commut<T: Op>(T);
impl<T: Op> OpBase for Commut<T> {
type InternalValue = T::Value;
type Value = T::Value;
fn identity() -> Self::InternalValue {
T::identity()
}
fn mul(lhs: &Self::InternalValue, rhs: &Self::InternalValue) -> Self::InternalValue {
T::mul(lhs, rhs)
}
fn rev(_value: &mut Self::InternalValue) {}
fn into_front(value: Self::InternalValue) -> Self::Value {
value
}
fn from_front(value: Self::Value) -> Self::InternalValue {
value
}
}
#[doc(hidden)]
pub struct NonCommut<T: Op>(T);
pub type NonCommutLinkCutTree<T> = LinkCutTreeBase<NonCommut<T>>;
impl<T: Op> OpBase for NonCommut<T> {
type InternalValue = (T::Value, T::Value);
type Value = T::Value;
fn identity() -> Self::InternalValue {
(T::identity(), T::identity())
}
fn mul(lhs: &Self::InternalValue, rhs: &Self::InternalValue) -> Self::InternalValue {
(T::mul(&lhs.0, &rhs.0), T::mul(&rhs.1, &lhs.1))
}
fn rev(value: &mut Self::InternalValue) {
std::mem::swap(&mut value.0, &mut value.1);
}
fn into_front(value: Self::InternalValue) -> Self::Value {
value.0
}
fn from_front(value: Self::Value) -> Self::InternalValue {
(value.clone(), value)
}
}
}
// }}}
// lazy_segtree {{{
// https://ngtkana.github.io/ac-adapter-rs/lazy_segtree/index.html
#[allow(dead_code)]
mod lazy_segtree {
use std::iter::FromIterator;
use std::mem::replace;
use std::ops::RangeBounds;
pub trait Op {
type Value;
type Operator: PartialEq;
fn identity() -> Self::Value;
fn op(lhs: &Self::Value, rhs: &Self::Value) -> Self::Value;
fn apply(op: &Self::Operator, value: &Self::Value) -> Self::Value;
fn identity_op() -> Self::Operator;
fn compose(op: &Self::Operator, other: &Self::Operator) -> Self::Operator;
}
#[derive(Debug, Clone)]
pub struct LazySegtree<O: Op> {
values: Vec<O::Value>,
operators: Vec<O::Operator>,
}
impl<O: Op> LazySegtree<O> {
pub fn new(values: &[O::Value]) -> Self
where
O::Value: Clone,
O::Operator: Clone,
{
let values_ = values;
let n = values_.len();
let mut values = vec![O::identity(); 2 * n];
values[n..].clone_from_slice(values_);
for i in (1..n).rev() {
values[i] = O::op(&values[i * 2], &values[i * 2 + 1]);
}
Self {
values,
operators: vec![O::identity_op(); 2 * n],
}
}
pub fn range_apply<R: RangeBounds<usize>>(&mut self, range: R, f: &O::Operator) {
let n = self.operators.len() / 2;
let (l, r) = open(range, n);
if l == r {
return;
}
let l = n + l;
let r = n + r;
for p in (0..usize::BITS - r.leading_zeros()).rev() {
self.push(l >> p);
self.push((r - 1) >> p);
}
{
let mut l = l;
let mut r = r;
while l < r {
if l & 1 != 0 {
self.operators[l] = O::compose(f, &self.operators[l]);
l += 1;
}
if r & 1 != 0 {
r -= 1;
self.operators[r] = O::compose(f, &self.operators[r]);
}
l >>= 1;
r >>= 1;
}
}
for p in 1..usize::BITS - r.leading_zeros() {
self.update(l >> p);
self.update((r - 1) >> p);
}
}
pub fn fold<R: RangeBounds<usize>>(&mut self, range: R) -> O::Value {
let n = self.operators.len() / 2;
let (mut l, mut r) = open(range, n);
if l == r {
return O::identity();
}
l += n;
r += n;
for p in (0..usize::BITS - r.leading_zeros()).rev() {
self.push(l >> p);
self.push((r - 1) >> p);
}
for p in 1..usize::BITS - r.leading_zeros() {
self.update(l >> p);
self.update((r - 1) >> p);
}
let mut left = O::identity();
let mut right = O::identity();
while l < r {
if l & 1 != 0 {
left = O::op(&left, &O::apply(&self.operators[l], &self.values[l]));
l += 1;
}
if r & 1 != 0 {
r -= 1;
right = O::op(&O::apply(&self.operators[r], &self.values[r]), &right);
}
l >>= 1;
r >>= 1;
}
O::op(&left, &right)
}
pub fn get(&self, i: usize) -> O::Value
where
O::Value: Clone,
{
let mut i = self.operators.len() / 2 + i;
let mut value = self.values[i].clone();
while i > 0 {
value = O::apply(&self.operators[i], &value);
i >>= 1;
}
value
}
pub fn collect(&self) -> Vec<O::Value>
where
O::Value: Clone,
{
(0..self.operators.len() / 2).map(|i| self.get(i)).collect()
}
fn push(&mut self, i: usize) {
let a = replace(&mut self.operators[i], O::identity_op());
self.values[i] = O::apply(&a, &self.values[i]);
if i < self.operators.len() / 2 {
self.operators[i << 1] = O::compose(&a, &self.operators[i << 1]);
self.operators[i << 1 | 1] = O::compose(&a, &self.operators[i << 1 | 1]);
}
}
fn update(&mut self, i: usize) {
self.values[i] = O::op(
&O::apply(&self.operators[i << 1], &self.values[i << 1]),
&O::apply(&self.operators[i << 1 | 1], &self.values[i << 1 | 1]),
)
}
}
impl<O: Op> FromIterator<O::Value> for LazySegtree<O>
where
O::Value: Clone,
O::Operator: Clone,
{
fn from_iter<T: IntoIterator<Item = O::Value>>(iter: T) -> Self {
Self::new(&iter.into_iter().collect::<Vec<_>>())
}
}
fn open<B: RangeBounds<usize>>(bounds: B, n: usize) -> (usize, usize) {
use std::ops::Bound;
let start = match bounds.start_bound() {
Bound::Unbounded => 0,
Bound::Included(&x) => x,
Bound::Excluded(&x) => x + 1,
};
let end = match bounds.end_bound() {
Bound::Unbounded => n,
Bound::Included(&x) => x + 1,
Bound::Excluded(&x) => x,
};
(start, end)
}
}
// }}}
// fp {{{
// https://ngtkana.github.io/ac-adapter-rs/fp/index.html
#[allow(dead_code)]
mod fp {
mod ext_gcd {
pub(crate) fn mod_inv<const P: u64>(x: u64) -> u64 {
debug_assert!(P % 2 == 1);
debug_assert!(P < 1 << 31);
debug_assert!(x < P);
mod_inv_signed(x as i64, P as i64) as u64
}
fn mod_inv_signed(a: i64, m: i64) -> i64 {
debug_assert!(a > 0);
debug_assert!(m > 0);
if a == 1 {
return 1;
}
m + (1 - m * mod_inv_signed(m % a, a)) / a
}
}
mod factorial {
use super::Fp;
use std::ops::Index;
pub struct Factorial<const P: u64> {
fact: Vec<Fp<P>>,
inv_fact: Vec<Fp<P>>,
}
impl<const P: u64> Factorial<P> {
pub fn new(length: usize) -> Self {
let mut fact = vec![Fp::<P>::new(1); length + 1];
let mut inv_fact = vec![Fp::<P>::new(1); length + 1];
for i in 1..=length {
fact[i] = fact[i - 1] * Fp::<P>::new(i as u64);
}
inv_fact[length] = fact[length].inv();
for i in (1..=length).rev() {
inv_fact[i - 1] = inv_fact[i] * Fp::<P>::new(i as u64);
}
Self { fact, inv_fact }
}
pub fn fact(&self, n: usize) -> Fp<P> {
self.fact[n]
}
pub fn inv_fact(&self, n: usize) -> Fp<P> {
self.inv_fact[n]
}
pub fn perm(&self, n: usize, k: usize) -> Fp<P> {
self.fact[n] * self.inv_fact[n - k]
}
pub fn comb(&self, n: usize, k: usize) -> Fp<P> {
self.fact[n] * self.inv_fact[n - k] * self.inv_fact[k]
}
pub fn binom(&self, n: usize, k: usize) -> Fp<P> {
self.comb(n, k)
}
pub fn comb_or_zero(&self, n: usize, k: isize) -> Fp<P> {
if k < 0 || k as usize > n {
Fp::<P>::new(0)
} else {
self.comb(n, k as usize)
}
}
pub fn comb_with_reputation(&self, n: usize, k: usize) -> Fp<P> {
assert!(n > 0 || k > 0);
self.comb(n + k - 1, k)
}
}
impl<const P: u64> Index<usize> for Factorial<P> {
type Output = Fp<P>;
fn index(&self, index: usize) -> &Self::Output {
&self.fact[index]
}
}
}
mod fourier {
use super::mod_inv;
use super::Fp;
use super::PrimitiveRoot;
const P1: u64 = 924844033;
const P2: u64 = 998244353;
const P3: u64 = 1012924417;
type F1 = Fp<P1>;
type F2 = Fp<P2>;
type F3 = Fp<P3>;
pub fn fps_mul<const P: u64>(a: impl AsRef<[Fp<P>]>, b: impl AsRef<[Fp<P>]>) -> Vec<Fp<P>>
where
(): PrimitiveRoot<P>,
{
let a = a.as_ref();
let b = b.as_ref();
if a.is_empty() || b.is_empty() {
return vec![];
}
let mut a = a.to_vec();
let mut b = b.to_vec();
let n = a.len() + b.len() - 1;
let len = n.next_power_of_two();
a.resize(len, Fp::new(0));
b.resize(len, Fp::new(0));
fft(&mut a);
fft(&mut b);
for (a, b) in a.iter_mut().zip(b.iter()) {
*a *= *b;
}
ifft(&mut a);
a.truncate(n);
a
}
pub fn any_mod_fps_mul<const P: u64>(a: &[Fp<P>], b: &[Fp<P>]) -> Vec<Fp<P>> {
let v1 = fps_mul(
a.iter().map(|&x| F1::new(x.value())).collect::<Vec<_>>(),
b.iter().map(|&x| F1::new(x.value())).collect::<Vec<_>>(),
);
let v2 = fps_mul(
a.iter().map(|&x| F2::new(x.value())).collect::<Vec<_>>(),
b.iter().map(|&x| F2::new(x.value())).collect::<Vec<_>>(),
);
let v3 = fps_mul(
a.iter().map(|&x| F3::new(x.value())).collect::<Vec<_>>(),
b.iter().map(|&x| F3::new(x.value())).collect::<Vec<_>>(),
);
v1.into_iter()
.zip(v2)
.zip(v3)
.map(|((e1, e2), e3)| garner(e1, e2, e3))
.collect::<Vec<_>>()
}
pub fn fft<const P: u64>(f: &mut [Fp<P>])
where
(): PrimitiveRoot<P>,
{
let n = f.len();
assert!(n.is_power_of_two());
assert!((P - 1) % n as u64 == 0);
let mut root = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / f.len() as u64);
let fourth = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / 4);
let mut fft_len = n;
while 4 <= fft_len {
let quarter = fft_len / 4;
for f in f.chunks_mut(fft_len) {
let mut c = Fp::new(1);
for (((i, j), k), l) in (0..)
.zip(quarter..)
.zip(quarter * 2..)
.zip(quarter * 3..)
.take(quarter)
{
let c2 = c * c;
let x = f[i] + f[k];
let y = f[j] + f[l];
let z = f[i] - f[k];
let w = fourth * (f[j] - f[l]);
f[i] = x + y;
f[j] = c2 * (x - y);
f[k] = c * (z + w);
f[l] = c2 * c * (z - w);
c *= root;
}
}
root *= root;
root *= root;
fft_len = quarter;
}
if fft_len == 2 {
for f in f.chunks_mut(2) {
let x = f[0];
let y = f[1];
f[0] = x + y;
f[1] = x - y;
}
}
}
pub fn ifft<const P: u64>(f: &mut [Fp<P>])
where
(): PrimitiveRoot<P>,
{
let n = f.len();
assert!(n.is_power_of_two());
let root = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / f.len() as u64);
let mut roots = std::iter::successors(Some(root.inv()), |x| Some(x * x))
.take(n.trailing_zeros() as usize + 1)
.collect::<Vec<_>>();
roots.reverse();
let fourth = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / 4).inv();
let mut quarter = 1_usize;
if n.trailing_zeros() % 2 == 1 {
for f in f.chunks_mut(2) {
let x = f[0];
let y = f[1];
f[0] = x + y;
f[1] = x - y;
}
quarter = 2;
}
while quarter != n {
let fft_len = quarter * 4;
let root = roots[fft_len.trailing_zeros() as usize];
for f in f.chunks_mut(fft_len) {
let mut c = Fp::new(1);
for (((i, j), k), l) in (0..)
.zip(quarter..)
.zip(quarter * 2..)
.zip(quarter * 3..)
.take(quarter)
{
let c2 = c * c;
let x = f[i] + c2 * f[j];
let y = f[i] - c2 * f[j];
let z = c * (f[k] + c2 * f[l]);
let w = fourth * c * (f[k] - c2 * f[l]);
f[i] = x + z;
f[j] = y + w;
f[k] = x - z;
f[l] = y - w;
c *= root;
}
}
quarter = fft_len;
}
let d = Fp::from(f.len()).inv();
f.iter_mut().for_each(|x| *x *= d);
}
fn garner<const P: u64>(x1: Fp<P1>, x2: Fp<P2>, x3: Fp<P3>) -> Fp<P> {
let (x1, x2, x3) = (x1.value(), x2.value(), x3.value());
let x2 = ((x2 + (P2 - x1)) * mod_inv::<P2>(P1)) % P2;
let x3 =
(((x3 + (P3 - x1)) * mod_inv::<P3>(P1) % P3 + (P3 - x2)) * mod_inv::<P3>(P2)) % P3;
Fp::new(x1 + P1 * (x2 + P2 * x3 % P))
}
}
use ext_gcd::mod_inv;
pub use factorial::Factorial;
pub use fourier::any_mod_fps_mul;
pub use fourier::fft;
pub use fourier::fps_mul;
pub use fourier::ifft;
use std::iter::Product;
use std::iter::Sum;
use std::mem::swap;
use std::ops::Add;
use std::ops::AddAssign;
use std::ops::Div;
use std::ops::DivAssign;
use std::ops::Mul;
use std::ops::MulAssign;
use std::ops::Neg;
use std::ops::Sub;
use std::ops::SubAssign;
#[macro_export]
macro_rules! fp {
($value:expr) => {
$crate::fp::Fp::from($value)
};
($value:expr; mod $p:expr) => {
$crate::fp::Fp::<$p>::from($value)
};
}
pub trait PrimitiveRoot<const P: u64> {
const VALUE: Fp<P>;
}
impl PrimitiveRoot<998244353> for () {
const VALUE: Fp<998244353> = Fp::new(3);
}
impl PrimitiveRoot<1012924417> for () {
const VALUE: Fp<1012924417> = Fp::new(5);
}
impl PrimitiveRoot<924844033> for () {
const VALUE: Fp<924844033> = Fp::new(5);
}
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct Fp<const P: u64> {
value: u64,
}
impl<const P: u64> Fp<P> {
pub const fn new(value: u64) -> Self {
Self { value: value % P }
}
pub const fn value(self) -> u64 {
self.value
}
pub fn inv(self) -> Self {
Self {
value: mod_inv::<P>(self.value),
}
}
pub fn pow(self, mut exp: u64) -> Self {
let mut result = Self::new(1);
let mut base = self;
while exp > 0 {
if exp & 1 == 1 {
result *= base;
}
base *= base;
exp >>= 1;
}
result
}
pub fn sign(pow: usize) -> Self {
Self::new(if pow % 2 == 0 { 1 } else { P - 1 })
}
}
impl<const P: u64> std::fmt::Debug for Fp<P> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
pub fn berlekamp_massey_fp(a: i64, p: i64) -> [i64; 2] {
let mut u0 = 0_i64;
let mut v0 = 1_i64;
let mut w0 = a * u0 + p * v0;
let mut u1 = 1_i64;
let mut v1 = 0_i64;
let mut w1 = a * u1 + p * v1;
while p <= w0 * w0 {
let q = w0 / w1;
u0 -= q * u1;
v0 -= q * v1;
w0 -= q * w1;
swap(&mut u0, &mut u1);
swap(&mut v0, &mut v1);
swap(&mut w0, &mut w1);
}
[w0, u0]
}
if self.value == 0 {
return write!(f, "0");
}
let [mut num, mut den] = berlekamp_massey_fp(self.value as i64, P as i64);
if den < 0 {
num = -num;
den = -den;
}
if den == 1 {
write!(f, "{}", num)
} else {
write!(f, "{}/{}", num, den)
}
}
}
impl<const P: u64> std::fmt::Display for Fp<P> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.value())
}
}
macro_rules! impl_from_signed {
($($t:ty),*) => {
$(
impl<const P: u64> From<$t> for Fp<P> {
fn from(x: $t) -> Self {
if x < 0 {
-Self::new((P as i64 - x as i64) as u64)
} else {
Self::new(x as u64)
}
}
}
)*
};
}
impl_from_signed!(i8, i16, i32, i64, i128, isize);
macro_rules! impl_from_unsigned {
($($t:ty),*) => {
$(
impl<const P: u64> From<$t> for Fp<P> {
fn from(x: $t) -> Self { Self::new(x as u64) }
}
)*
};
}
impl_from_unsigned!(u8, u16, u32, u64, u128, usize);
impl<const P: u64> AddAssign<Fp<P>> for Fp<P> {
fn add_assign(&mut self, rhs: Fp<P>) {
self.value += rhs.value;
if self.value >= P {
self.value -= P;
}
}
}
impl<const P: u64> SubAssign<Fp<P>> for Fp<P> {
fn sub_assign(&mut self, rhs: Fp<P>) {
if self.value < rhs.value {
self.value += P;
}
self.value -= rhs.value;
}
}
impl<const P: u64> MulAssign<Fp<P>> for Fp<P> {
fn mul_assign(&mut self, rhs: Fp<P>) {
self.value = self.value * rhs.value % P;
}
}
#[allow(clippy::suspicious_op_assign_impl)]
impl<const P: u64> DivAssign<Fp<P>> for Fp<P> {
fn div_assign(&mut self, rhs: Fp<P>) {
*self *= rhs.inv()
}
}
macro_rules! fp_forward_ops {
($(
$trait:ident,
$trait_assign:ident,
$fn:ident,
$fn_assign:ident,
)*) => {$(
impl<const P: u64> $trait_assign<&Fp<P>> for Fp<P> {
fn $fn_assign(&mut self, rhs: &Fp<P>) {
self.$fn_assign(*rhs);
}
}
impl<const P: u64, T: Into<Fp<P>>> $trait<T> for Fp<P> {
type Output = Fp<P>;
fn $fn(mut self, rhs: T) -> Self::Output {
self.$fn_assign(rhs.into());
self
}
}
impl<const P: u64> $trait<&Fp<P>> for Fp<P> {
type Output = Fp<P>;
fn $fn(self, rhs: &Fp<P>) -> Self::Output {
self.$fn(*rhs)
}
}
impl<const P: u64, T: Into<Fp<P>>> $trait<T> for &Fp<P> {
type Output = Fp<P>;
fn $fn(self, rhs: T) -> Self::Output {
(*self).$fn(rhs.into())
}
}
impl<const P: u64> $trait<&Fp<P>> for &Fp<P> {
type Output = Fp<P>;
fn $fn(self, rhs: &Fp<P>) -> Self::Output {
(*self).$fn(*rhs)
}
}
)*};
}
fp_forward_ops! {
Add, AddAssign, add, add_assign,
Sub, SubAssign, sub, sub_assign,
Mul, MulAssign, mul, mul_assign,
Div, DivAssign, div, div_assign,
}
impl<const P: u64> Neg for Fp<P> {
type Output = Fp<P>;
fn neg(mut self) -> Self::Output {
if self.value > 0 {
self.value = P - self.value;
}
self
}
}
impl<const P: u64> Sum for Fp<P> {
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::new(0), |acc, x| acc + x)
}
}
impl<'a, const P: u64> Sum<&'a Self> for Fp<P> {
fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self {
iter.copied().sum()
}
}
impl<const P: u64> Product for Fp<P> {
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::new(1), |acc, x| acc * x)
}
}
impl<'a, const P: u64> Product<&'a Self> for Fp<P> {
fn product<I: Iterator<Item = &'a Self>>(iter: I) -> Self {
iter.copied().product()
}
}
}
// }}}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0