結果

問題 No.650 行列木クエリ
ユーザー ngtkanangtkana
提出日時 2024-06-24 14:47:03
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 72 ms / 2,000 ms
コード長 40,734 bytes
コンパイル時間 14,127 ms
コンパイル使用メモリ 387,260 KB
実行使用メモリ 33,172 KB
最終ジャッジ日時 2024-06-24 14:47:20
合計ジャッジ時間 15,429 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,812 KB
testcase_01 AC 32 ms
6,944 KB
testcase_02 AC 72 ms
23,812 KB
testcase_03 AC 1 ms
6,944 KB
testcase_04 AC 33 ms
6,940 KB
testcase_05 AC 71 ms
23,868 KB
testcase_06 AC 1 ms
6,940 KB
testcase_07 AC 1 ms
6,944 KB
testcase_08 AC 33 ms
8,448 KB
testcase_09 AC 66 ms
33,172 KB
testcase_10 AC 1 ms
6,944 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: unused import: `factorial::Factorial`
    --> src/main.rs:1046:13
     |
1046 |     pub use factorial::Factorial;
     |             ^^^^^^^^^^^^^^^^^^^^
     |
     = note: `#[warn(unused_imports)]` on by default

warning: unused import: `fourier::any_mod_fps_mul`
    --> src/main.rs:1047:13
     |
1047 |     pub use fourier::any_mod_fps_mul;
     |             ^^^^^^^^^^^^^^^^^^^^^^^^

warning: unused import: `fourier::fft`
    --> src/main.rs:1048:13
     |
1048 |     pub use fourier::fft;
     |             ^^^^^^^^^^^^

warning: unused import: `fourier::fps_mul`
    --> src/main.rs:1049:13
     |
1049 |     pub use fourier::fps_mul;
     |             ^^^^^^^^^^^^^^^^

warning: unused import: `fourier::ifft`
    --> src/main.rs:1050:13
     |
1050 |     pub use fourier::ifft;
     |             ^^^^^^^^^^^^^

ソースコード

diff #

use proconio::input;
use segtree::Segtree;
use std::iter::FusedIterator;

type Fp = fp::Fp<1_000_000_007>;

fn main() {
    input! {
        n: usize,
        edges: [(usize, usize); n - 1],
        q: usize,
    }

    let (hld, _g) = Hld::from_edges(0, &edges);
    let Hld { index, .. } = &hld;

    let mut segtree = Segtree::<O>::from_iter(vec![<O as segtree::Op>::identity(); n]);
    for _ in 0..q {
        input! {
            com: String,
        }
        match com.as_str() {
            "x" => {
                input! {
                    e: usize,
                    x00: u64,
                    x01: u64,
                    x10: u64,
                    x11: u64,
                }
                let (i, j) = edges[e];
                *segtree.entry(index[i].max(index[j])) =
                    [[fp!(x00), fp!(x01)], [fp!(x10), fp!(x11)]];
            }
            "g" => {
                input! {
                    i: usize,
                    j: usize,
                }
                let mut ans = MATRIX_IDENTITY;
                for (l, r, last, reversed) in hld.path_segments_by_index(i, j) {
                    assert!(!reversed);
                    ans = matrix_mul(segtree.fold(l + usize::from(last)..=r), ans);
                }
                let [[x00, x01], [x10, x11]] = ans;
                println!("{x00} {x01} {x10} {x11}");
            }
            _ => unreachable!(),
        }
    }
}

type Matrix = [[Fp; 2]; 2];
const MATRIX_IDENTITY: Matrix = [[Fp::new(1), Fp::new(0)], [Fp::new(0), Fp::new(1)]];

fn matrix_mul(lhs: Matrix, rhs: Matrix) -> Matrix {
    let mut result = [[fp!(0); 2]; 2];
    for i in 0..2 {
        for j in 0..2 {
            for k in 0..2 {
                result[i][k] += lhs[i][j] * rhs[j][k];
            }
        }
    }
    result
}

enum O {}
impl segtree::Op for O {
    type Value = Matrix;

    fn identity() -> Self::Value {
        MATRIX_IDENTITY
    }

    fn op(lhs: &Self::Value, rhs: &Self::Value) -> Self::Value {
        matrix_mul(*lhs, *rhs)
    }
}

pub struct Hld {
    pub parent: Vec<usize>,
    pub index: Vec<usize>,
    pub head: Vec<usize>,
}
impl Hld {
    pub fn from_short_parents(mut parent: Vec<usize>) -> (Self, Vec<Vec<usize>>) {
        parent.insert(0, 0);
        let mut g = vec![Vec::new(); parent.len()];
        for (i, &p) in parent.iter().enumerate().skip(1) {
            g[p].push(i);
        }
        (__build_hld(0, &mut g, parent), g)
    }

    pub fn from_edges(root: usize, edges: &[(usize, usize)]) -> (Self, Vec<Vec<usize>>) {
        Self::from_edge_iterator(root, edges.iter().copied())
    }

    pub fn from_edge_iterator(
        root: usize,
        edges: impl ExactSizeIterator<Item = (usize, usize)>,
    ) -> (Self, Vec<Vec<usize>>) {
        let mut g = vec![Vec::new(); edges.len() + 1];
        for (i, j) in edges {
            g[i].push(j);
            g[j].push(i);
        }
        let parent = __remove_parent(root, &mut g);
        (__build_hld(root, &mut g, parent), g)
    }

    pub fn path_segments(&self, from: usize, to: usize) -> PathSegments<'_> {
        PathSegments {
            hld: self,
            from,
            to,
            exhausted: false,
        }
    }

    pub fn path_segments_by_index(
        &self,
        i: usize,
        j: usize,
    ) -> impl Iterator<Item = (usize, usize, bool, bool)> + '_ {
        self.path_segments(i, j)
            .map(|(i, j, last, reversed)| (self.index[i], self.index[j], last, reversed))
    }

    pub fn ledacy_iter_v(&self, i: usize, j: usize) -> impl Iterator<Item = (usize, usize)> + '_ {
        self.path_segments_by_index(i, j)
            .map(|(i, j, _last, _revresed)| (i, j))
    }

    pub fn lca(&self, mut i: usize, mut j: usize) -> usize {
        while self.head[i] != self.head[j] {
            if self.index[i] < self.index[j] {
                j = self.parent[self.head[j]];
            } else {
                i = self.parent[self.head[i]];
            }
        }
        std::cmp::min_by_key(i, j, |&i| self.index[i])
    }
}

pub struct PathSegments<'a> {
    hld: &'a Hld,
    from: usize,
    to: usize,
    exhausted: bool,
}
impl Iterator for PathSegments<'_> {
    // i: usize         root-side,
    // j: usize         leaf-side,
    // last: bool       contains-lca
    // reversed: bool   false if from --> to and i --> j coincide
    type Item = (usize, usize, bool, bool);

    fn next(&mut self) -> Option<Self::Item> {
        (!self.exhausted).then_some(())?;
        let Self {
            hld,
            from: i,
            to: j,
            ..
        } = *self;
        let Hld {
            index,
            head,
            parent,
        } = hld;
        Some(if head[i] == head[j] {
            self.exhausted = true;
            if index[i] <= index[j] {
                (i, j, true, false)
            } else {
                (j, i, true, true)
            }
        } else {
            if index[i] < index[j] {
                self.to = parent[head[j]];
                (head[j], j, false, false)
            } else {
                self.from = parent[head[i]];
                (head[i], i, false, true)
            }
        })
    }
}
impl FusedIterator for PathSegments<'_> {}

fn __build_hld(root: usize, g: &mut [Vec<usize>], parent: Vec<usize>) -> Hld {
    let n = g.len();
    __heavy_first(0, g);
    let mut index = vec![usize::MAX; n];
    let mut head = vec![usize::MAX; n];
    head[root] = root;
    __head_and_index(0, &*g, &mut head, &mut index, &mut (0..));
    Hld {
        parent,
        index,
        head,
    }
}
fn __head_and_index(
    i: usize,
    g: &[Vec<usize>],
    head: &mut [usize],
    index: &mut [usize],
    current: &mut std::ops::RangeFrom<usize>,
) {
    index[i] = current.next().unwrap();
    for &j in &g[i] {
        head[j] = if j == g[i][0] { head[i] } else { j };
        __head_and_index(j, g, head, index, current);
    }
}

fn __heavy_first(i: usize, g: &mut [Vec<usize>]) -> usize {
    let mut max = 0;
    let mut size = 1;
    for e in 0..g[i].len() {
        let csize = __heavy_first(g[i][e], g);
        if max < csize {
            max = csize;
            g[i].swap(0, e);
        }
        size += csize;
    }
    size
}

fn __remove_parent(root: usize, g: &mut [Vec<usize>]) -> Vec<usize> {
    let mut stack = vec![root];
    let mut parent = vec![usize::MAX; g.len()];
    parent[root] = root;
    while let Some(i) = stack.pop() {
        g[i].retain(|&j| parent[i] != j);
        for &j in &g[i] {
            parent[j] = i;
            stack.push(j);
        }
    }
    parent
}

// segtree {{{
// https://ngtkana.github.io/ac-adapter-rs/segtree/index.html

#[allow(dead_code)]
mod segtree {
    use core::fmt;
    use std::collections::BTreeMap;
    use std::iter::FromIterator;
    use std::ops::Deref;
    use std::ops::DerefMut;
    use std::ops::Index;
    use std::ops::RangeBounds;
    pub trait Op {
        type Value;
        fn identity() -> Self::Value;
        fn op(lhs: &Self::Value, rhs: &Self::Value) -> Self::Value;
    }
    pub struct Segtree<O: Op> {
        values: Vec<O::Value>,
    }
    impl<O: Op> Segtree<O> {
        pub fn from_len(n: usize) -> Self
        where
            O::Value: Clone,
        {
            Self::new(&vec![O::identity(); n])
        }

        pub fn new(values: &[O::Value]) -> Self
        where
            O::Value: Clone,
        {
            let values_ = values;
            let n = values.len();
            let mut values = vec![O::identity(); 2 * n];
            values[n..].clone_from_slice(values_);
            for i in (1..n).rev() {
                values[i] = O::op(&values[i * 2], &values[i * 2 + 1]);
            }
            Self { values }
        }

        pub fn fold<R: RangeBounds<usize>>(&self, range: R) -> O::Value {
            let n = self.values.len() / 2;
            let (mut start, mut end) = open(range, n);
            assert!(start <= end && end <= n);
            start += n;
            end += n;
            let mut left = O::identity();
            let mut right = O::identity();
            while start < end {
                if start % 2 == 1 {
                    left = O::op(&left, &self.values[start]);
                    start += 1;
                }
                if end % 2 == 1 {
                    end -= 1;
                    right = O::op(&self.values[end], &right);
                }
                start /= 2;
                end /= 2;
            }
            O::op(&left, &right)
        }

        pub fn entry(&mut self, index: usize) -> Entry<O> {
            let n = self.values.len() / 2;
            Entry {
                segtree: self,
                index: n + index,
            }
        }

        pub fn iter(&self) -> impl Iterator<Item = &O::Value> {
            self.values[self.values.len() / 2..].iter()
        }

        pub fn as_slice(&self) -> &[O::Value] {
            &self.values[self.values.len() / 2..]
        }
    }
    impl<O: Op> fmt::Debug for Segtree<O>
    where
        O::Value: fmt::Debug,
    {
        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            f.debug_struct("Segtree")
                .field("values", &self.values)
                .finish()
        }
    }
    impl<O: Op> FromIterator<O::Value> for Segtree<O>
    where
        O::Value: Clone,
    {
        fn from_iter<I: IntoIterator<Item = O::Value>>(iter: I) -> Self {
            Self::new(&iter.into_iter().collect::<Vec<_>>())
        }
    }
    impl<O: Op> Index<usize> for Segtree<O> {
        type Output = O::Value;

        fn index(&self, index: usize) -> &Self::Output {
            &self.values[self.values.len() / 2 + index]
        }
    }
    pub struct Entry<'a, O: Op> {
        segtree: &'a mut Segtree<O>,
        index: usize,
    }
    impl<'a, O: Op> Drop for Entry<'a, O> {
        fn drop(&mut self) {
            let mut index = self.index;
            while index != 0 {
                index /= 2;
                self.segtree.values[index] = O::op(
                    &self.segtree.values[index * 2],
                    &self.segtree.values[index * 2 + 1],
                );
            }
        }
    }
    impl<'a, O: Op> Deref for Entry<'a, O> {
        type Target = O::Value;

        fn deref(&self) -> &Self::Target {
            &self.segtree.values[self.index]
        }
    }
    impl<'a, O: Op> DerefMut for Entry<'a, O> {
        fn deref_mut(&mut self) -> &mut Self::Target {
            &mut self.segtree.values[self.index]
        }
    }
    impl<'a, O: Op> fmt::Debug for Entry<'a, O>
    where
        O::Value: fmt::Debug,
    {
        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            f.debug_struct("Entry").field("index", &self.index).finish()
        }
    }
    pub struct SparseSegtree<K, O: Op> {
        inner: Segtree<O>,
        keys: Vec<K>,
    }
    impl<K: Ord, O: Op> SparseSegtree<K, O> {
        pub fn new(kv: &[(K, O::Value)]) -> Self
        where
            K: Clone,
            O::Value: Clone,
        {
            let mut keys = kv.iter().map(|(k, _)| k.clone()).collect::<Vec<_>>();
            keys.sort();
            let values = kv.iter().map(|(_, v)| v.clone()).collect::<Vec<_>>();
            Self {
                inner: Segtree::new(&values),
                keys,
            }
        }

        pub fn fold<R: RangeBounds<K>>(&self, range: R) -> O::Value {
            let (start, end) = open_key(range, &self.keys);
            self.inner.fold(start..end)
        }

        pub fn entry(&mut self, key: &K) -> Entry<'_, O> {
            let index = self.keys.binary_search(key).unwrap() + self.keys.len();
            Entry {
                segtree: &mut self.inner,
                index,
            }
        }

        pub fn keys(&self) -> &[K] {
            &self.keys
        }

        pub fn iter(&self) -> impl Iterator<Item = (&K, &O::Value)> {
            self.keys.iter().zip(self.inner.as_slice())
        }

        pub fn collect_map(&self) -> BTreeMap<K, O::Value>
        where
            K: Clone,
            O::Value: Clone,
        {
            self.keys
                .iter()
                .cloned()
                .zip(self.inner.iter().cloned())
                .collect()
        }
    }
    impl<K, O: Op> fmt::Debug for SparseSegtree<K, O>
    where
        K: fmt::Debug,
        O::Value: fmt::Debug,
    {
        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            f.debug_struct("SparseSegtree")
                .field("inner", &self.inner)
                .field("keys", &self.keys)
                .finish()
        }
    }
    impl<K: Ord, O: Op> FromIterator<(K, O::Value)> for SparseSegtree<K, O>
    where
        K: Clone,
        O::Value: Clone,
    {
        fn from_iter<I: IntoIterator<Item = (K, O::Value)>>(iter: I) -> Self {
            Self::new(&iter.into_iter().collect::<Vec<_>>())
        }
    }
    impl<K: Ord, O: Op> Index<K> for SparseSegtree<K, O> {
        type Output = O::Value;

        fn index(&self, key: K) -> &Self::Output {
            &self.inner[self.keys.binary_search(&key).unwrap()]
        }
    }
    pub struct Sparse2dSegtree<K, L, O: Op> {
        segtrees: Vec<SparseSegtree<L, O>>,
        keys: Vec<K>,
    }
    impl<K, L, O: Op> Sparse2dSegtree<K, L, O>
    where
        K: Ord + Clone,
        L: Ord + Clone,
        O::Value: Clone,
    {
        pub fn new(points: &[(K, L, O::Value)]) -> Self {
            let mut keys = points.iter().map(|(k, _, _)| k.clone()).collect::<Vec<_>>();
            keys.sort();
            keys.dedup();
            let mut lvs = vec![vec![]; keys.len() * 2];
            for (k, l, v) in points {
                let mut i = keys.binary_search(k).unwrap();
                i += keys.len();
                while i != 0 {
                    lvs[i].push((l.clone(), v.clone()));
                    i /= 2;
                }
            }
            let segtrees = lvs
                .into_iter()
                .map(|lvs_| {
                    let mut ls = lvs_.iter().map(|(l, _)| l).collect::<Vec<_>>();
                    ls.sort();
                    ls.dedup();
                    let mut lvs = ls
                        .iter()
                        .map(|&l| (l.clone(), O::identity()))
                        .collect::<Vec<_>>();
                    for (l, v) in &lvs_ {
                        let i = ls.binary_search(&l).unwrap();
                        lvs[i].1 = O::op(&lvs[i].1, v);
                    }
                    SparseSegtree::new(&lvs)
                })
                .collect::<Vec<_>>();
            Self { segtrees, keys }
        }

        pub fn fold(&self, i: impl RangeBounds<K>, j: impl RangeBounds<L> + Clone) -> O::Value {
            let (mut i0, mut i1) = open_key(i, &self.keys);
            i0 += self.keys.len();
            i1 += self.keys.len();
            let mut left = O::identity();
            let mut right = O::identity();
            while i0 < i1 {
                if i0 % 2 == 1 {
                    left = O::op(&left, &self.segtrees[i0].fold(j.clone()));
                    i0 += 1;
                }
                if i1 % 2 == 1 {
                    i1 -= 1;
                    right = O::op(&self.segtrees[i1].fold(j.clone()), &right);
                }
                i0 /= 2;
                i1 /= 2;
            }
            O::op(&left, &right)
        }

        pub fn apply(&mut self, k: &K, l: &L, mut f: impl FnMut(&mut O::Value)) {
            let mut i = self.keys.binary_search(k).unwrap();
            i += self.keys.len();
            while i != 0 {
                f(&mut self.segtrees[i].entry(l));
                i /= 2;
            }
        }

        pub fn iter(&self) -> impl Iterator<Item = (&K, &L, &O::Value)> {
            self.keys
                .iter()
                .zip(self.segtrees[self.keys.len()..].iter())
                .flat_map(|(k, segtree)| segtree.iter().map(move |(l, v)| (k, l, v)))
        }

        pub fn collect_map(&self) -> BTreeMap<(K, L), O::Value>
        where
            K: Clone,
            L: Clone,
            O::Value: Clone,
        {
            self.keys
                .iter()
                .flat_map(|k| {
                    self.segtrees[self.keys.len() + self.keys.binary_search(k).unwrap()]
                        .iter()
                        .map(move |(l, v)| ((k.clone(), l.clone()), v.clone()))
                })
                .collect()
        }
    }
    impl<K, L, O: Op> fmt::Debug for Sparse2dSegtree<K, L, O>
    where
        K: fmt::Debug,
        L: fmt::Debug,
        O::Value: fmt::Debug,
    {
        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            f.debug_struct("Sparse2dSegtree")
                .field("segtrees", &self.segtrees)
                .field("keys", &self.keys)
                .finish()
        }
    }
    impl<K, L, O: Op> FromIterator<(K, L, O::Value)> for Sparse2dSegtree<K, L, O>
    where
        K: Ord + Clone,
        L: Ord + Clone,
        O::Value: Clone,
    {
        fn from_iter<I: IntoIterator<Item = (K, L, O::Value)>>(iter: I) -> Self {
            Self::new(&iter.into_iter().collect::<Vec<_>>())
        }
    }
    impl<K: Ord, L: Ord, O: Op> Index<K> for Sparse2dSegtree<K, L, O> {
        type Output = SparseSegtree<L, O>;

        fn index(&self, i: K) -> &Self::Output {
            &self.segtrees[self.keys.binary_search(&i).unwrap() + self.keys.len()]
        }
    }
    impl<K: Ord, L: Ord, O: Op> Index<(K, L)> for Sparse2dSegtree<K, L, O> {
        type Output = O::Value;

        fn index(&self, (i, j): (K, L)) -> &Self::Output {
            &self.segtrees[self.keys.binary_search(&i).unwrap() + self.keys.len()][j]
        }
    }
    pub struct Dense2dSegtree<O: Op> {
        values: Vec<Vec<O::Value>>,
    }
    impl<O: Op> Dense2dSegtree<O> {
        pub fn new(values: &[Vec<O::Value>]) -> Self
        where
            O::Value: Clone,
        {
            let values_ = values;
            let h = values.len();
            let w = values.get(0).map_or(0, Vec::len);
            let mut values = vec![vec![O::identity(); 2 * w]; 2 * h];
            for (values, values_) in values[h..].iter_mut().zip(values_) {
                values[w..].clone_from_slice(values_);
                for j in (1..w).rev() {
                    values[j] = O::op(&values[j * 2], &values[j * 2 + 1]);
                }
            }
            for i in (1..h).rev() {
                for j in 0..2 * w {
                    values[i][j] = O::op(&values[i * 2][j], &values[i * 2 + 1][j]);
                }
            }
            Self { values }
        }

        pub fn fold(&self, i: impl RangeBounds<usize>, j: impl RangeBounds<usize>) -> O::Value {
            let h = self.values.len() / 2;
            let w = self.values.get(0).map_or(0, |v| v.len() / 2);
            let (mut i0, mut i1) = open(i, h);
            assert!(i0 <= i1 && i1 <= h);
            let (mut j0, mut j1) = open(j, w);
            assert!(j0 <= j1 && j1 <= w);
            i0 += h;
            i1 += h;
            j0 += w;
            j1 += w;
            let mut left = O::identity();
            let mut right = O::identity();
            while i0 < i1 {
                if i0 % 2 == 1 {
                    let mut j0 = j0;
                    let mut j1 = j1;
                    while j0 < j1 {
                        if j0 % 2 == 1 {
                            left = O::op(&left, &self.values[i0][j0]);
                            j0 += 1;
                        }
                        if j1 % 2 == 1 {
                            j1 -= 1;
                            right = O::op(&self.values[i0][j1], &right);
                        }
                        j0 /= 2;
                        j1 /= 2;
                    }
                    i0 += 1;
                }
                if i1 % 2 == 1 {
                    i1 -= 1;
                    let mut j0 = j0;
                    let mut j1 = j1;
                    while j0 < j1 {
                        if j0 % 2 == 1 {
                            left = O::op(&left, &self.values[i1][j0]);
                            j0 += 1;
                        }
                        if j1 % 2 == 1 {
                            j1 -= 1;
                            right = O::op(&self.values[i1][j1], &right);
                        }
                        j0 /= 2;
                        j1 /= 2;
                    }
                }
                i0 /= 2;
                i1 /= 2;
            }
            O::op(&left, &right)
        }

        pub fn entry(&mut self, i: usize, j: usize) -> Dense2dEntry<O> {
            let h = self.values.len() / 2;
            let w = self.values.get(0).map_or(0, |v| v.len() / 2);
            Dense2dEntry {
                segtree: self,
                i: h + i,
                j: w + j,
            }
        }

        pub fn iter(&self) -> impl Iterator<Item = &[O::Value]> {
            self.values[self.values.len() / 2..]
                .iter()
                .map(|v| &v[v.len() / 2..])
        }

        pub fn collect_vec(&self) -> Vec<Vec<O::Value>>
        where
            O::Value: Clone,
        {
            self.iter().map(<[_]>::to_vec).collect()
        }
    }
    impl<O: Op> fmt::Debug for Dense2dSegtree<O>
    where
        O::Value: fmt::Debug,
    {
        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            f.debug_struct("Dense2dSegtree")
                .field("values", &self.values)
                .finish()
        }
    }
    impl<O: Op> Index<usize> for Dense2dSegtree<O> {
        type Output = [O::Value];

        fn index(&self, index: usize) -> &Self::Output {
            &self.values[self.values.len() / 2 + index]
        }
    }
    pub struct Dense2dEntry<'a, O: Op> {
        segtree: &'a mut Dense2dSegtree<O>,
        i: usize,
        j: usize,
    }
    impl<'a, O: Op> Drop for Dense2dEntry<'a, O> {
        fn drop(&mut self) {
            let mut i = self.i;
            let mut j = self.j / 2;
            while j != 0 {
                self.segtree.values[i][j] = O::op(
                    &self.segtree.values[i][2 * j],
                    &self.segtree.values[i][2 * j + 1],
                );
                j /= 2;
            }
            i /= 2;
            while i != 0 {
                let mut j = self.j;
                while j != 0 {
                    self.segtree.values[i][j] = O::op(
                        &self.segtree.values[i * 2][j],
                        &self.segtree.values[i * 2 + 1][j],
                    );
                    j /= 2;
                }
                i /= 2;
            }
        }
    }
    impl<'a, O: Op> Deref for Dense2dEntry<'a, O> {
        type Target = O::Value;

        fn deref(&self) -> &Self::Target {
            &self.segtree.values[self.i][self.j]
        }
    }
    impl<'a, O: Op> DerefMut for Dense2dEntry<'a, O> {
        fn deref_mut(&mut self) -> &mut Self::Target {
            &mut self.segtree.values[self.i][self.j]
        }
    }
    fn open<B: RangeBounds<usize>>(bounds: B, n: usize) -> (usize, usize) {
        use std::ops::Bound;
        let start = match bounds.start_bound() {
            Bound::Unbounded => 0,
            Bound::Included(&x) => x,
            Bound::Excluded(&x) => x + 1,
        };
        let end = match bounds.end_bound() {
            Bound::Unbounded => n,
            Bound::Included(&x) => x + 1,
            Bound::Excluded(&x) => x,
        };
        (start, end)
    }
    fn open_key<K: Ord, B: RangeBounds<K>>(bounds: B, keys: &[K]) -> (usize, usize) {
        use std::ops::Bound;
        let start = match bounds.start_bound() {
            Bound::Unbounded => 0,
            Bound::Included(x) => match keys.binary_search(x) {
                Ok(i) | Err(i) => i,
            },
            Bound::Excluded(x) => match keys.binary_search(x) {
                Ok(i) => i + 1,
                Err(i) => i,
            },
        };
        let end = match bounds.end_bound() {
            Bound::Unbounded => keys.len(),
            Bound::Included(x) => match keys.binary_search(x) {
                Ok(i) => i + 1,
                Err(i) => i,
            },
            Bound::Excluded(x) => match keys.binary_search(x) {
                Ok(i) | Err(i) => i,
            },
        };
        (start, end)
    }
}
// }}}
// fp {{{
// https://ngtkana.github.io/ac-adapter-rs/fp/index.html

#[allow(dead_code)]
mod fp {
    mod ext_gcd {
        pub(crate) fn mod_inv<const P: u64>(x: u64) -> u64 {
            debug_assert!(P % 2 == 1);
            debug_assert!(P < 1 << 31);
            debug_assert!(x < P);
            mod_inv_signed(x as i64, P as i64) as u64
        }
        fn mod_inv_signed(a: i64, m: i64) -> i64 {
            debug_assert!(a > 0);
            debug_assert!(m > 0);
            if a == 1 {
                return 1;
            }
            m + (1 - m * mod_inv_signed(m % a, a)) / a
        }
    }
    mod factorial {
        use super::Fp;
        use std::ops::Index;
        pub struct Factorial<const P: u64> {
            fact: Vec<Fp<P>>,
            inv_fact: Vec<Fp<P>>,
        }
        impl<const P: u64> Factorial<P> {
            pub fn new(length: usize) -> Self {
                let mut fact = vec![Fp::<P>::new(1); length + 1];
                let mut inv_fact = vec![Fp::<P>::new(1); length + 1];
                for i in 1..=length {
                    fact[i] = fact[i - 1] * Fp::<P>::new(i as u64);
                }
                inv_fact[length] = fact[length].inv();
                for i in (1..=length).rev() {
                    inv_fact[i - 1] = inv_fact[i] * Fp::<P>::new(i as u64);
                }
                Self { fact, inv_fact }
            }

            pub fn fact(&self, n: usize) -> Fp<P> {
                self.fact[n]
            }

            pub fn inv_fact(&self, n: usize) -> Fp<P> {
                self.inv_fact[n]
            }

            pub fn perm(&self, n: usize, k: usize) -> Fp<P> {
                self.fact[n] * self.inv_fact[n - k]
            }

            pub fn comb(&self, n: usize, k: usize) -> Fp<P> {
                self.fact[n] * self.inv_fact[n - k] * self.inv_fact[k]
            }

            pub fn binom(&self, n: usize, k: usize) -> Fp<P> {
                self.comb(n, k)
            }

            pub fn comb_or_zero(&self, n: usize, k: isize) -> Fp<P> {
                if k < 0 || k as usize > n {
                    Fp::<P>::new(0)
                } else {
                    self.comb(n, k as usize)
                }
            }

            pub fn comb_with_reputation(&self, n: usize, k: usize) -> Fp<P> {
                assert!(n > 0 || k > 0);
                self.comb(n + k - 1, k)
            }
        }
        impl<const P: u64> Index<usize> for Factorial<P> {
            type Output = Fp<P>;

            fn index(&self, index: usize) -> &Self::Output {
                &self.fact[index]
            }
        }
    }
    mod fourier {
        use super::mod_inv;
        use super::Fp;
        use super::PrimitiveRoot;
        const P1: u64 = 924844033;
        const P2: u64 = 998244353;
        const P3: u64 = 1012924417;
        type F1 = Fp<P1>;
        type F2 = Fp<P2>;
        type F3 = Fp<P3>;
        pub fn fps_mul<const P: u64>(a: impl AsRef<[Fp<P>]>, b: impl AsRef<[Fp<P>]>) -> Vec<Fp<P>>
        where
            (): PrimitiveRoot<P>,
        {
            let a = a.as_ref();
            let b = b.as_ref();
            if a.is_empty() || b.is_empty() {
                return vec![];
            }
            let mut a = a.to_vec();
            let mut b = b.to_vec();
            let n = a.len() + b.len() - 1;
            let len = n.next_power_of_two();
            a.resize(len, Fp::new(0));
            b.resize(len, Fp::new(0));
            fft(&mut a);
            fft(&mut b);
            for (a, b) in a.iter_mut().zip(b.iter()) {
                *a *= *b;
            }
            ifft(&mut a);
            a.truncate(n);
            a
        }
        pub fn any_mod_fps_mul<const P: u64>(a: &[Fp<P>], b: &[Fp<P>]) -> Vec<Fp<P>> {
            let v1 = fps_mul(
                a.iter().map(|&x| F1::new(x.value())).collect::<Vec<_>>(),
                b.iter().map(|&x| F1::new(x.value())).collect::<Vec<_>>(),
            );
            let v2 = fps_mul(
                a.iter().map(|&x| F2::new(x.value())).collect::<Vec<_>>(),
                b.iter().map(|&x| F2::new(x.value())).collect::<Vec<_>>(),
            );
            let v3 = fps_mul(
                a.iter().map(|&x| F3::new(x.value())).collect::<Vec<_>>(),
                b.iter().map(|&x| F3::new(x.value())).collect::<Vec<_>>(),
            );
            v1.into_iter()
                .zip(v2)
                .zip(v3)
                .map(|((e1, e2), e3)| garner(e1, e2, e3))
                .collect::<Vec<_>>()
        }
        pub fn fft<const P: u64>(f: &mut [Fp<P>])
        where
            (): PrimitiveRoot<P>,
        {
            let n = f.len();
            assert!(n.is_power_of_two());
            assert!((P - 1) % n as u64 == 0);
            let mut root = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / f.len() as u64);
            let fourth = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / 4);
            let mut fft_len = n;
            while 4 <= fft_len {
                let quarter = fft_len / 4;
                for f in f.chunks_mut(fft_len) {
                    let mut c = Fp::new(1);
                    for (((i, j), k), l) in (0..)
                        .zip(quarter..)
                        .zip(quarter * 2..)
                        .zip(quarter * 3..)
                        .take(quarter)
                    {
                        let c2 = c * c;
                        let x = f[i] + f[k];
                        let y = f[j] + f[l];
                        let z = f[i] - f[k];
                        let w = fourth * (f[j] - f[l]);
                        f[i] = x + y;
                        f[j] = c2 * (x - y);
                        f[k] = c * (z + w);
                        f[l] = c2 * c * (z - w);
                        c *= root;
                    }
                }
                root *= root;
                root *= root;
                fft_len = quarter;
            }
            if fft_len == 2 {
                for f in f.chunks_mut(2) {
                    let x = f[0];
                    let y = f[1];
                    f[0] = x + y;
                    f[1] = x - y;
                }
            }
        }
        pub fn ifft<const P: u64>(f: &mut [Fp<P>])
        where
            (): PrimitiveRoot<P>,
        {
            let n = f.len();
            assert!(n.is_power_of_two());
            let root = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / f.len() as u64);
            let mut roots = std::iter::successors(Some(root.inv()), |x| Some(x * x))
                .take(n.trailing_zeros() as usize + 1)
                .collect::<Vec<_>>();
            roots.reverse();
            let fourth = <() as PrimitiveRoot<P>>::VALUE.pow((P - 1) / 4).inv();
            let mut quarter = 1_usize;
            if n.trailing_zeros() % 2 == 1 {
                for f in f.chunks_mut(2) {
                    let x = f[0];
                    let y = f[1];
                    f[0] = x + y;
                    f[1] = x - y;
                }
                quarter = 2;
            }
            while quarter != n {
                let fft_len = quarter * 4;
                let root = roots[fft_len.trailing_zeros() as usize];
                for f in f.chunks_mut(fft_len) {
                    let mut c = Fp::new(1);
                    for (((i, j), k), l) in (0..)
                        .zip(quarter..)
                        .zip(quarter * 2..)
                        .zip(quarter * 3..)
                        .take(quarter)
                    {
                        let c2 = c * c;
                        let x = f[i] + c2 * f[j];
                        let y = f[i] - c2 * f[j];
                        let z = c * (f[k] + c2 * f[l]);
                        let w = fourth * c * (f[k] - c2 * f[l]);
                        f[i] = x + z;
                        f[j] = y + w;
                        f[k] = x - z;
                        f[l] = y - w;
                        c *= root;
                    }
                }
                quarter = fft_len;
            }
            let d = Fp::from(f.len()).inv();
            f.iter_mut().for_each(|x| *x *= d);
        }
        fn garner<const P: u64>(x1: Fp<P1>, x2: Fp<P2>, x3: Fp<P3>) -> Fp<P> {
            let (x1, x2, x3) = (x1.value(), x2.value(), x3.value());
            let x2 = ((x2 + (P2 - x1)) * mod_inv::<P2>(P1)) % P2;
            let x3 =
                (((x3 + (P3 - x1)) * mod_inv::<P3>(P1) % P3 + (P3 - x2)) * mod_inv::<P3>(P2)) % P3;
            Fp::new(x1 + P1 * (x2 + P2 * x3 % P))
        }
    }
    use ext_gcd::mod_inv;
    pub use factorial::Factorial;
    pub use fourier::any_mod_fps_mul;
    pub use fourier::fft;
    pub use fourier::fps_mul;
    pub use fourier::ifft;
    use std::iter::Product;
    use std::iter::Sum;
    use std::mem::swap;
    use std::ops::Add;
    use std::ops::AddAssign;
    use std::ops::Div;
    use std::ops::DivAssign;
    use std::ops::Mul;
    use std::ops::MulAssign;
    use std::ops::Neg;
    use std::ops::Sub;
    use std::ops::SubAssign;
    #[macro_export]
    macro_rules! fp {
        ($value:expr) => {
            $crate::fp::Fp::from($value)
        };
        ($value:expr; mod $p:expr) => {
            $crate::fp::Fp::<$p>::from($value)
        };
    }
    pub trait PrimitiveRoot<const P: u64> {
        const VALUE: Fp<P>;
    }
    impl PrimitiveRoot<998244353> for () {
        const VALUE: Fp<998244353> = Fp::new(3);
    }
    impl PrimitiveRoot<1012924417> for () {
        const VALUE: Fp<1012924417> = Fp::new(5);
    }
    impl PrimitiveRoot<924844033> for () {
        const VALUE: Fp<924844033> = Fp::new(5);
    }
    #[derive(Clone, Copy, PartialEq, Eq, Hash)]
    pub struct Fp<const P: u64> {
        value: u64,
    }
    impl<const P: u64> Fp<P> {
        pub const fn new(value: u64) -> Self {
            Self { value: value % P }
        }

        pub const fn value(self) -> u64 {
            self.value
        }

        pub fn inv(self) -> Self {
            Self {
                value: mod_inv::<P>(self.value),
            }
        }

        pub fn pow(self, mut exp: u64) -> Self {
            let mut result = Self::new(1);
            let mut base = self;
            while exp > 0 {
                if exp & 1 == 1 {
                    result *= base;
                }
                base *= base;
                exp >>= 1;
            }
            result
        }

        pub fn sign(pow: usize) -> Self {
            Self::new(if pow % 2 == 0 { 1 } else { P - 1 })
        }
    }
    impl<const P: u64> std::fmt::Debug for Fp<P> {
        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            pub fn berlekamp_massey_fp(a: i64, p: i64) -> [i64; 2] {
                let mut u0 = 0_i64;
                let mut v0 = 1_i64;
                let mut w0 = a * u0 + p * v0;
                let mut u1 = 1_i64;
                let mut v1 = 0_i64;
                let mut w1 = a * u1 + p * v1;
                while p <= w0 * w0 {
                    let q = w0 / w1;
                    u0 -= q * u1;
                    v0 -= q * v1;
                    w0 -= q * w1;
                    swap(&mut u0, &mut u1);
                    swap(&mut v0, &mut v1);
                    swap(&mut w0, &mut w1);
                }
                [w0, u0]
            }
            if self.value == 0 {
                return write!(f, "0");
            }
            let [mut num, mut den] = berlekamp_massey_fp(self.value as i64, P as i64);
            if den < 0 {
                num = -num;
                den = -den;
            }
            if den == 1 {
                write!(f, "{}", num)
            } else {
                write!(f, "{}/{}", num, den)
            }
        }
    }
    impl<const P: u64> std::fmt::Display for Fp<P> {
        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            write!(f, "{}", self.value())
        }
    }
    macro_rules! impl_from_signed {
        ($($t:ty),*) => {
            $(
                impl<const P: u64> From<$t> for Fp<P> {
                    fn from(x: $t) -> Self {
                        if x < 0 {
                            -Self::new((P as i64 - x as i64) as u64)
                        } else {
                            Self::new(x as u64)
                        }
                    }
                }
            )*
        };
    }
    impl_from_signed!(i8, i16, i32, i64, i128, isize);
    macro_rules! impl_from_unsigned {
        ($($t:ty),*) => {
            $(
                impl<const P: u64> From<$t> for Fp<P> {
                    fn from(x: $t) -> Self { Self::new(x as u64) }
                }
            )*
        };
    }
    impl_from_unsigned!(u8, u16, u32, u64, u128, usize);
    impl<const P: u64> AddAssign<Fp<P>> for Fp<P> {
        fn add_assign(&mut self, rhs: Fp<P>) {
            self.value += rhs.value;
            if self.value >= P {
                self.value -= P;
            }
        }
    }
    impl<const P: u64> SubAssign<Fp<P>> for Fp<P> {
        fn sub_assign(&mut self, rhs: Fp<P>) {
            if self.value < rhs.value {
                self.value += P;
            }
            self.value -= rhs.value;
        }
    }
    impl<const P: u64> MulAssign<Fp<P>> for Fp<P> {
        fn mul_assign(&mut self, rhs: Fp<P>) {
            self.value = self.value * rhs.value % P;
        }
    }
    #[allow(clippy::suspicious_op_assign_impl)]
    impl<const P: u64> DivAssign<Fp<P>> for Fp<P> {
        fn div_assign(&mut self, rhs: Fp<P>) {
            *self *= rhs.inv()
        }
    }
    macro_rules! fp_forward_ops {
        ($(
            $trait:ident,
            $trait_assign:ident,
            $fn:ident,
            $fn_assign:ident,
        )*) => {$(
            impl<const P: u64> $trait_assign<&Fp<P>> for Fp<P> {
                fn $fn_assign(&mut self, rhs: &Fp<P>) {
                    self.$fn_assign(*rhs);
                }
            }
            impl<const P: u64, T: Into<Fp<P>>> $trait<T> for Fp<P> {
                type Output = Fp<P>;
                fn $fn(mut self, rhs: T) -> Self::Output {
                    self.$fn_assign(rhs.into());
                    self
                }
            }
            impl<const P: u64> $trait<&Fp<P>> for Fp<P> {
                type Output = Fp<P>;
                fn $fn(self, rhs: &Fp<P>) -> Self::Output {
                    self.$fn(*rhs)
                }
            }
            impl<const P: u64, T: Into<Fp<P>>> $trait<T> for &Fp<P> {
                type Output = Fp<P>;
                fn $fn(self, rhs: T) -> Self::Output {
                    (*self).$fn(rhs.into())
                }
            }
            impl<const P: u64> $trait<&Fp<P>> for &Fp<P> {
                type Output = Fp<P>;
                fn $fn(self, rhs: &Fp<P>) -> Self::Output {
                    (*self).$fn(*rhs)
                }
            }
        )*};
    }
    fp_forward_ops! {
        Add, AddAssign, add, add_assign,
        Sub, SubAssign, sub, sub_assign,
        Mul, MulAssign, mul, mul_assign,
        Div, DivAssign, div, div_assign,
    }
    impl<const P: u64> Neg for Fp<P> {
        type Output = Fp<P>;

        fn neg(mut self) -> Self::Output {
            if self.value > 0 {
                self.value = P - self.value;
            }
            self
        }
    }
    impl<const P: u64> Sum for Fp<P> {
        fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
            iter.fold(Self::new(0), |acc, x| acc + x)
        }
    }
    impl<'a, const P: u64> Sum<&'a Self> for Fp<P> {
        fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self {
            iter.copied().sum()
        }
    }
    impl<const P: u64> Product for Fp<P> {
        fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
            iter.fold(Self::new(1), |acc, x| acc * x)
        }
    }
    impl<'a, const P: u64> Product<&'a Self> for Fp<P> {
        fn product<I: Iterator<Item = &'a Self>>(iter: I) -> Self {
            iter.copied().product()
        }
    }
}
// }}}
0