結果

問題 No.2795 Perfect Number
ユーザー AerenAeren
提出日時 2024-06-28 21:22:32
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 2,301 bytes
コンパイル時間 3,029 ms
コンパイル使用メモリ 259,160 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-06-28 21:22:45
合計ジャッジ時間 3,817 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 35
権限があれば一括ダウンロードができます

ソースコード

diff #

// #include <bits/allocator.h> // Temp fix for gcc13 global pragma
// #pragma GCC target("avx2,bmi2,popcnt,lzcnt")
// #pragma GCC optimize("O3,unroll-loops")
#include <bits/stdc++.h>
// #include <x86intrin.h>
using namespace std;
#if __cplusplus >= 202002L
using namespace numbers;
#endif
#ifdef LOCAL
	#include "Debug.h"
#else
	#define debug_endl() 42
	#define debug(...) 42
	#define debug2(...) 42
	#define debugbin(...) 42
#endif

// Correctness proved in https://github.com/kth-competitive-programming/kactl/blob/master/doc/modmul-proof.pdf
// twice faster than (__int128_t)a * b % M
using ull = unsigned long long;
ull mod_mul(ull a, ull b, ull M){
	long long res = a * b - M * ull(1.L / M * a * b);
	return res + M * (res < 0) - M * (res >= (long long)M);
}
ull mod_pow(ull b, ull e, ull mod){
	ull res = 1;
	for(; e; b = mod_mul(b, b, mod), e >>= 1) if(e & 1) res = mod_mul(res, b, mod);
	return res;
}
// Millar Rabin Primality Test
// 7 times slower than a^b mod c
bool isprime(ull n){
	if(n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;
	ull s = __builtin_ctzll(n - 1), d = n >> s;
	for(ull a: {2, 325, 9375, 28178, 450775, 9780504, 1795265022}){
		ull p = mod_pow(a, d, n), i = s;
		while(p != 1 && p != n - 1 && a % n && i --) p = mod_mul(p, p, n);
		if(p != n - 1 && i != s) return false;
	}
	return true;
}
// Pollard rho algorithm
// O(n^1/4)
ull get_factor(ull n){
	auto f = [n](ull x){ return mod_mul(x, x, n) + 1; };
	ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
	while(t ++ % 40 || gcd(prd, n) == 1){
		if(x == y) x = ++ i, y = f(x);
		if(q = mod_mul(prd, max(x, y) - min(x, y), n)) prd = q;
		x = f(x), y = f(f(y));
	}
	return gcd(prd, n);
}
// Returns the prime factors in arbitrary order
vector<ull> factorize(ull n){
	if(n == 1) return {};
	if(isprime(n)) return {n};
	ull x = get_factor(n);
	auto l = factorize(x), r = factorize(n / x);
	l.insert(l.end(), r.begin(), r.end());
	return l;
}

int main(){
	cin.tie(0)->sync_with_stdio(0);
	cin.exceptions(ios::badbit | ios::failbit);
	long long n;
	cin >> n;
	map<long long, __int128_t> prod;
	for(auto p: factorize(n)){
		if(!prod.contains(p)){
			prod[p] = 1;
		}
		prod[p] *= p;
	}
	__int128_t x = 1;
	for(auto [p, pw]: prod){
		x *= (pw * p - 1) / (p - 1);
	}
	2 * n == x ? cout << "Yes\n" : cout << "No\n";
	return 0;
}

/*

*/
0