結果
| 問題 |
No.2795 Perfect Number
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-06-28 21:39:54 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 52 ms / 2,000 ms |
| コード長 | 5,023 bytes |
| コンパイル時間 | 169 ms |
| コンパイル使用メモリ | 82,204 KB |
| 実行使用メモリ | 63,580 KB |
| 最終ジャッジ日時 | 2024-06-28 21:40:01 |
| 合計ジャッジ時間 | 2,651 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 35 |
ソースコード
class BinaryTrie:
class node:
def __init__(self):
self.left = None
self.right = None
self.cnt = 0
def __init__(self,n):
self.root = self.node()
self.n = n
self.xor = 0
self.set = set()
def __len__(self):
return self.root.cnt
def __str__(self):
res = []
for val in self.set:
res.append(val^self.xor)
res.sort()
res = ["["] + [str(val)+", " for val in res] + ["]"]
return "".join(res)
def append(self,x):
x ^= self.xor
if x in self.set:
return
self.set.add(x)
pos = self.root
for i in range(self.n-1,-1,-1):
pos.cnt += 1
if x>>i & 1:
if pos.right is None:
pos.right = self.node()
pos = pos.right
else:
if pos.left is None:
pos.left = self.node()
pos = pos.left
pos.cnt = 1
def all_prod(self,x):
self.xor ^= x
def mex(self):
res = 0
pos = self.root
t = 1<<self.n
for i in range(self.n-1,-1,-1):
t >>= 1
if self.xor>>i & 1:
check = 0
if pos.right:
check = pos.right.cnt
if check==t:
res += t
if not pos.left:
return res
else:
pos = pos.left
else:
if not pos.right:
return res
else:
pos = pos.right
else:
check = 0
if pos.left:
check = pos.left.cnt
if check==t:
res += t
if not pos.right:
return res
else:
pos = pos.right
else:
if not pos.left:
return res
else:
pos = pos.left
return res
import sys,random
from collections import deque
input = lambda :sys.stdin.readline().rstrip()
mi = lambda :map(int,input().split())
li = lambda :list(mi())
def isPrimeMR(n):
if n==1:
return 0
d = n - 1
d = d // (d & -d)
L = [2, 3, 5, 7, 11, 13, 17]
if n in L:
return 1
for a in L:
t = d
y = pow(a, t, n)
if y == 1: continue
while y != n - 1:
y = (y * y) % n
if y == 1 or t == n - 1: return 0
t <<= 1
return 1
def findFactorRho(n):
from math import gcd
m = 1 << n.bit_length() // 8
for c in range(1, 99):
f = lambda x: (x * x + c) % n
y, r, q, g = 2, 1, 1, 1
while g == 1:
x = y
for i in range(r):
y = f(y)
k = 0
while k < r and g == 1:
ys = y
for i in range(min(m, r - k)):
y = f(y)
q = q * abs(x - y) % n
g = gcd(q, n)
k += m
r <<= 1
if g == n:
g = 1
while g == 1:
ys = f(ys)
g = gcd(abs(x - ys), n)
if g < n:
if isPrimeMR(g): return g
elif isPrimeMR(n // g): return n // g
return findFactorRho(g)
def primeFactor(n):
i = 2
ret = {}
rhoFlg = 0
while i*i <= n:
k = 0
while n % i == 0:
n //= i
k += 1
if k: ret[i] = k
i += 1 + i % 2
if i == 101 and n >= 2 ** 20:
while n > 1:
if isPrimeMR(n):
ret[n], n = 1, 1
else:
rhoFlg = 1
j = findFactorRho(n)
k = 0
while n % j == 0:
n //= j
k += 1
ret[j] = k
if n > 1: ret[n] = 1
if rhoFlg: ret = {x: ret[x] for x in sorted(ret)}
return ret
def sub_solve(S):
"""
総和がSの単調列の数え上げ
"""
dp = [0] * (S+1)
dp[0] = 1
for val in range(1,S+1):
ndp = [0] * (S+1)
for pre_S in range(S+1):
for k in range((S-pre_S)//val+1):
ndp[pre_S+k*val] += dp[pre_S]
dp = ndp
return dp[S]
def divisors(n):
res = [1]
prime = primeFactor(n)
for p in prime:
newres = []
for d in res:
for j in range(prime[p]+1):
newres.append(d*p**j)
res = newres
res.sort()
return res
def solve(N):
pf = primeFactor(N)
res = 1
for p in pf:
e = pf[p]
res *= (1-p**(e+1))//(1-p)
return res == 2*N
N = int(input())
print("Yes" if solve(N) else "No")