結果
問題 | No.2795 Perfect Number |
ユーザー | chineristAC |
提出日時 | 2024-06-28 21:39:54 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 52 ms / 2,000 ms |
コード長 | 5,023 bytes |
コンパイル時間 | 169 ms |
コンパイル使用メモリ | 82,204 KB |
実行使用メモリ | 63,580 KB |
最終ジャッジ日時 | 2024-06-28 21:40:01 |
合計ジャッジ時間 | 2,651 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 44 ms
56,064 KB |
testcase_01 | AC | 39 ms
56,192 KB |
testcase_02 | AC | 40 ms
55,936 KB |
testcase_03 | AC | 44 ms
56,064 KB |
testcase_04 | AC | 40 ms
56,192 KB |
testcase_05 | AC | 39 ms
56,448 KB |
testcase_06 | AC | 40 ms
56,320 KB |
testcase_07 | AC | 41 ms
56,192 KB |
testcase_08 | AC | 38 ms
55,936 KB |
testcase_09 | AC | 38 ms
56,320 KB |
testcase_10 | AC | 38 ms
56,448 KB |
testcase_11 | AC | 42 ms
56,064 KB |
testcase_12 | AC | 41 ms
56,320 KB |
testcase_13 | AC | 42 ms
55,936 KB |
testcase_14 | AC | 43 ms
56,576 KB |
testcase_15 | AC | 44 ms
56,448 KB |
testcase_16 | AC | 42 ms
56,320 KB |
testcase_17 | AC | 42 ms
56,448 KB |
testcase_18 | AC | 42 ms
56,320 KB |
testcase_19 | AC | 42 ms
56,064 KB |
testcase_20 | AC | 43 ms
56,064 KB |
testcase_21 | AC | 43 ms
56,320 KB |
testcase_22 | AC | 52 ms
56,192 KB |
testcase_23 | AC | 42 ms
56,320 KB |
testcase_24 | AC | 42 ms
56,448 KB |
testcase_25 | AC | 39 ms
56,448 KB |
testcase_26 | AC | 39 ms
56,960 KB |
testcase_27 | AC | 44 ms
62,848 KB |
testcase_28 | AC | 41 ms
56,704 KB |
testcase_29 | AC | 43 ms
56,320 KB |
testcase_30 | AC | 41 ms
56,320 KB |
testcase_31 | AC | 39 ms
56,320 KB |
testcase_32 | AC | 38 ms
56,320 KB |
testcase_33 | AC | 40 ms
56,320 KB |
testcase_34 | AC | 40 ms
56,192 KB |
testcase_35 | AC | 44 ms
63,580 KB |
testcase_36 | AC | 39 ms
56,576 KB |
testcase_37 | AC | 39 ms
56,832 KB |
ソースコード
class BinaryTrie: class node: def __init__(self): self.left = None self.right = None self.cnt = 0 def __init__(self,n): self.root = self.node() self.n = n self.xor = 0 self.set = set() def __len__(self): return self.root.cnt def __str__(self): res = [] for val in self.set: res.append(val^self.xor) res.sort() res = ["["] + [str(val)+", " for val in res] + ["]"] return "".join(res) def append(self,x): x ^= self.xor if x in self.set: return self.set.add(x) pos = self.root for i in range(self.n-1,-1,-1): pos.cnt += 1 if x>>i & 1: if pos.right is None: pos.right = self.node() pos = pos.right else: if pos.left is None: pos.left = self.node() pos = pos.left pos.cnt = 1 def all_prod(self,x): self.xor ^= x def mex(self): res = 0 pos = self.root t = 1<<self.n for i in range(self.n-1,-1,-1): t >>= 1 if self.xor>>i & 1: check = 0 if pos.right: check = pos.right.cnt if check==t: res += t if not pos.left: return res else: pos = pos.left else: if not pos.right: return res else: pos = pos.right else: check = 0 if pos.left: check = pos.left.cnt if check==t: res += t if not pos.right: return res else: pos = pos.right else: if not pos.left: return res else: pos = pos.left return res import sys,random from collections import deque input = lambda :sys.stdin.readline().rstrip() mi = lambda :map(int,input().split()) li = lambda :list(mi()) def isPrimeMR(n): if n==1: return 0 d = n - 1 d = d // (d & -d) L = [2, 3, 5, 7, 11, 13, 17] if n in L: return 1 for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = (y * y) % n if y == 1 or t == n - 1: return 0 t <<= 1 return 1 def findFactorRho(n): from math import gcd m = 1 << n.bit_length() // 8 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x - ys), n) if g < n: if isPrimeMR(g): return g elif isPrimeMR(n // g): return n // g return findFactorRho(g) def primeFactor(n): i = 2 ret = {} rhoFlg = 0 while i*i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += 1 + i % 2 if i == 101 and n >= 2 ** 20: while n > 1: if isPrimeMR(n): ret[n], n = 1, 1 else: rhoFlg = 1 j = findFactorRho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if rhoFlg: ret = {x: ret[x] for x in sorted(ret)} return ret def sub_solve(S): """ 総和がSの単調列の数え上げ """ dp = [0] * (S+1) dp[0] = 1 for val in range(1,S+1): ndp = [0] * (S+1) for pre_S in range(S+1): for k in range((S-pre_S)//val+1): ndp[pre_S+k*val] += dp[pre_S] dp = ndp return dp[S] def divisors(n): res = [1] prime = primeFactor(n) for p in prime: newres = [] for d in res: for j in range(prime[p]+1): newres.append(d*p**j) res = newres res.sort() return res def solve(N): pf = primeFactor(N) res = 1 for p in pf: e = pf[p] res *= (1-p**(e+1))//(1-p) return res == 2*N N = int(input()) print("Yes" if solve(N) else "No")