結果

問題 No.2798 Multiple Chain
ユーザー KumaTachiRen
提出日時 2024-06-28 21:42:21
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 19,851 bytes
コンパイル時間 7,045 ms
コンパイル使用メモリ 335,692 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-06-28 21:42:46
合計ジャッジ時間 6,928 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 51
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#if __has_include(<atcoder/all>)
#include <atcoder/all>
/*
using namespace atcoder;
using mint = modint998244353;
using vm = vector<mint>;
using vvm = vector<vm>;
inline ostream &operator<<(ostream &os, const mint x)
{
return os << x.val();
};
inline istream &operator>>(istream &is, mint &x)
{
long long v;
is >> v;
x = v;
return is;
};
*/
#endif
struct Fast
{
Fast()
{
std::cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << setprecision(10);
}
} fast;
#define all(a) (a).begin(), (a).end()
#define contains(a, x) ((a).find(x) != (a).end())
#define rep(i, a, b) for (int i = (a); i < (int)(b); i++)
#define rrep(i, a, b) for (int i = (int)(b) - 1; i >= (a); i--)
#define YN(b) cout << ((b) ? "YES" : "NO") << "\n";
#define Yn(b) cout << ((b) ? "Yes" : "No") << "\n";
#define yn(b) cout << ((b) ? "yes" : "no") << "\n";
template <class T>
inline bool chmin(T &a, T b)
{
if (a > b)
{
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T &a, T b)
{
if (a < b)
{
a = b;
return true;
}
return false;
}
using ll = long long;
using vb = vector<bool>;
using vvb = vector<vb>;
using vi = vector<int>;
using vvi = vector<vi>;
using vl = vector<ll>;
using vvl = vector<vl>;
template <typename T1, typename T2>
ostream &operator<<(ostream &os, pair<T1, T2> &p)
{
os << "(" << p.first << "," << p.second << ")";
return os;
}
template <typename T>
ostream &operator<<(ostream &os, vector<T> &vec)
{
for (int i = 0; i < (int)vec.size(); i++)
{
os << vec[i] << (i + 1 == (int)vec.size() ? "" : " ");
}
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &vec)
{
for (int i = 0; i < (int)vec.size(); i++)
is >> vec[i];
return is;
}
ll floor(ll a, ll b) { return a >= 0 ? a / b : (a + 1) / b - 1; }
ll ceil(ll a, ll b) { return a > 0 ? (a - 1) / b + 1 : a / b; }
// https://nyaannyaan.github.io/library/prime/fast-factorize.hpp.html
#line 2 "prime/fast-factorize.hpp"
#include <cstdint>
#include <numeric>
#include <vector>
using namespace std;
#line 2 "internal/internal-math.hpp"
#line 2 "internal/internal-type-traits.hpp"
#include <type_traits>
using namespace std;
namespace internal
{
template <typename T>
using is_broadly_integral =
typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> ||
is_same_v<T, __uint128_t>,
true_type, false_type>::type;
template <typename T>
using is_broadly_signed =
typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>,
true_type, false_type>::type;
template <typename T>
using is_broadly_unsigned =
typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>,
true_type, false_type>::type;
#define ENABLE_VALUE(x) \
template <typename T> \
constexpr bool x##_v = x<T>::value;
ENABLE_VALUE(is_broadly_integral);
ENABLE_VALUE(is_broadly_signed);
ENABLE_VALUE(is_broadly_unsigned);
#undef ENABLE_VALUE
#define ENABLE_HAS_TYPE(var) \
template <class, class = void> \
struct has_##var : false_type \
{ \
}; \
template <class T> \
struct has_##var<T, void_t<typename T::var>> : true_type \
{ \
}; \
template <class T> \
constexpr auto has_##var##_v = has_##var<T>::value;
#define ENABLE_HAS_VAR(var) \
template <class, class = void> \
struct has_##var : false_type \
{ \
}; \
template <class T> \
struct has_##var<T, void_t<decltype(T::var)>> : true_type \
{ \
}; \
template <class T> \
constexpr auto has_##var##_v = has_##var<T>::value;
} // namespace internal
#line 4 "internal/internal-math.hpp"
namespace internal
{
#include <cassert>
#include <utility>
#line 10 "internal/internal-math.hpp"
using namespace std;
// a mod p
template <typename T>
T safe_mod(T a, T p)
{
a %= p;
if constexpr (is_broadly_signed_v<T>)
{
if (a < 0)
a += p;
}
return a;
}
// pair(g, x)
// s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
template <typename T>
pair<T, T> inv_gcd(T a, T p)
{
static_assert(is_broadly_signed_v<T>);
a = safe_mod(a, p);
if (a == 0)
return {p, 0};
T b = p, x = 1, y = 0;
while (a != 0)
{
T q = b / a;
swap(a, b %= a);
swap(x, y -= q * x);
}
if (y < 0)
y += p / b;
return {b, y};
}
// : a^{-1} mod p
// gcd(a, p) != 1
template <typename T>
T inv(T a, T p)
{
static_assert(is_broadly_signed_v<T>);
a = safe_mod(a, p);
T b = p, x = 1, y = 0;
while (a != 0)
{
T q = b / a;
swap(a, b %= a);
swap(x, y -= q * x);
}
assert(b == 1);
return y < 0 ? y + p : y;
}
// T :
// U : T*T
template <typename T, typename U>
T modpow(T a, U n, T p)
{
a = safe_mod(a, p);
T ret = 1 % p;
while (n != 0)
{
if (n % 2 == 1)
ret = U(ret) * a % p;
a = U(a) * a % p;
n /= 2;
}
return ret;
}
// : pair(rem, mod)
// {0, 0}
template <typename T>
pair<T, T> crt(const vector<T> &r, const vector<T> &m)
{
static_assert(is_broadly_signed_v<T>);
assert(r.size() == m.size());
int n = int(r.size());
T r0 = 0, m0 = 1;
for (int i = 0; i < n; i++)
{
assert(1 <= m[i]);
T r1 = safe_mod(r[i], m[i]), m1 = m[i];
if (m0 < m1)
swap(r0, r1), swap(m0, m1);
if (m0 % m1 == 0)
{
if (r0 % m1 != r1)
return {0, 0};
continue;
}
auto [g, im] = inv_gcd(m0, m1);
T u1 = m1 / g;
if ((r1 - r0) % g)
return {0, 0};
T x = (r1 - r0) / g % u1 * im % u1;
r0 += x * m0;
m0 *= u1;
if (r0 < 0)
r0 += m0;
}
return {r0, m0};
}
} // namespace internal
#line 2 "misc/rng.hpp"
#line 2 "internal/internal-seed.hpp"
#include <chrono>
using namespace std;
namespace internal
{
unsigned long long non_deterministic_seed()
{
unsigned long long m =
chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count();
m ^= 9845834732710364265uLL;
m ^= m << 24, m ^= m >> 31, m ^= m << 35;
return m;
}
unsigned long long deterministic_seed() { return 88172645463325252UL; }
// 64 bit seed ( seed )
//
// #define RANDOMIZED_SEED
unsigned long long seed()
{
#if defined(NyaanLocal) && !defined(RANDOMIZED_SEED)
return deterministic_seed();
#else
return non_deterministic_seed();
#endif
}
} // namespace internal
#line 4 "misc/rng.hpp"
namespace my_rand
{
using i64 = long long;
using u64 = unsigned long long;
// [0, 2^64 - 1)
u64 rng()
{
static u64 _x = internal::seed();
return _x ^= _x << 7, _x ^= _x >> 9;
}
// [l, r]
i64 rng(i64 l, i64 r)
{
assert(l <= r);
return l + rng() % u64(r - l + 1);
}
// [l, r)
i64 randint(i64 l, i64 r)
{
assert(l < r);
return l + rng() % u64(r - l);
}
// choose n numbers from [l, r) without overlapping
vector<i64> randset(i64 l, i64 r, i64 n)
{
assert(l <= r && n <= r - l);
unordered_set<i64> s;
for (i64 i = n; i; --i)
{
i64 m = randint(l, r + 1 - i);
if (s.find(m) != s.end())
m = r - i;
s.insert(m);
}
vector<i64> ret;
for (auto &x : s)
ret.push_back(x);
sort(begin(ret), end(ret));
return ret;
}
// [0.0, 1.0)
double rnd() { return rng() * 5.42101086242752217004e-20; }
// [l, r)
double rnd(double l, double r)
{
assert(l < r);
return l + rnd() * (r - l);
}
template <typename T>
void randshf(vector<T> &v)
{
int n = v.size();
for (int i = 1; i < n; i++)
swap(v[i], v[randint(0, i + 1)]);
}
} // namespace my_rand
using my_rand::randint;
using my_rand::randset;
using my_rand::randshf;
using my_rand::rnd;
using my_rand::rng;
#line 2 "modint/arbitrary-montgomery-modint.hpp"
#include <iostream>
using namespace std;
template <typename Int, typename UInt, typename Long, typename ULong, int id>
struct ArbitraryLazyMontgomeryModIntBase
{
using mint = ArbitraryLazyMontgomeryModIntBase;
inline static UInt mod;
inline static UInt r;
inline static UInt n2;
static constexpr int bit_length = sizeof(UInt) * 8;
static UInt get_r()
{
UInt ret = mod;
while (mod * ret != 1)
ret *= UInt(2) - mod * ret;
return ret;
}
static void set_mod(UInt m)
{
assert(m < (UInt(1u) << (bit_length - 2)));
assert((m & 1) == 1);
mod = m, n2 = -ULong(m) % m, r = get_r();
}
UInt a;
ArbitraryLazyMontgomeryModIntBase() : a(0) {}
ArbitraryLazyMontgomeryModIntBase(const Long &b)
: a(reduce(ULong(b % mod + mod) * n2)){};
static UInt reduce(const ULong &b)
{
return (b + ULong(UInt(b) * UInt(-r)) * mod) >> bit_length;
}
mint &operator+=(const mint &b)
{
if (Int(a += b.a - 2 * mod) < 0)
a += 2 * mod;
return *this;
}
mint &operator-=(const mint &b)
{
if (Int(a -= b.a) < 0)
a += 2 * mod;
return *this;
}
mint &operator*=(const mint &b)
{
a = reduce(ULong(a) * b.a);
return *this;
}
mint &operator/=(const mint &b)
{
*this *= b.inverse();
return *this;
}
mint operator+(const mint &b) const { return mint(*this) += b; }
mint operator-(const mint &b) const { return mint(*this) -= b; }
mint operator*(const mint &b) const { return mint(*this) *= b; }
mint operator/(const mint &b) const { return mint(*this) /= b; }
bool operator==(const mint &b) const
{
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
bool operator!=(const mint &b) const
{
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
mint operator-() const { return mint(0) - mint(*this); }
mint operator+() const { return mint(*this); }
mint pow(ULong n) const
{
mint ret(1), mul(*this);
while (n > 0)
{
if (n & 1)
ret *= mul;
mul *= mul, n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const mint &b)
{
return os << b.get();
}
friend istream &operator>>(istream &is, mint &b)
{
Long t;
is >> t;
b = ArbitraryLazyMontgomeryModIntBase(t);
return (is);
}
mint inverse() const
{
Int x = get(), y = get_mod(), u = 1, v = 0;
while (y > 0)
{
Int t = x / y;
swap(x -= t * y, y);
swap(u -= t * v, v);
}
return mint{u};
}
UInt get() const
{
UInt ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
static UInt get_mod() { return mod; }
};
// id 使
template <int id>
using ArbitraryLazyMontgomeryModInt =
ArbitraryLazyMontgomeryModIntBase<int, unsigned int, long long,
unsigned long long, id>;
template <int id>
using ArbitraryLazyMontgomeryModInt64bit =
ArbitraryLazyMontgomeryModIntBase<long long, unsigned long long, __int128_t,
__uint128_t, id>;
#line 2 "prime/miller-rabin.hpp"
#line 4 "prime/miller-rabin.hpp"
using namespace std;
#line 8 "prime/miller-rabin.hpp"
namespace fast_factorize
{
template <typename T, typename U>
bool miller_rabin(const T &n, vector<T> ws)
{
if (n <= 2)
return n == 2;
if (n % 2 == 0)
return false;
T d = n - 1;
while (d % 2 == 0)
d /= 2;
U e = 1, rev = n - 1;
for (T w : ws)
{
if (w % n == 0)
continue;
T t = d;
U y = internal::modpow<T, U>(w, t, n);
while (t != n - 1 && y != e && y != rev)
y = y * y % n, t *= 2;
if (y != rev && t % 2 == 0)
return false;
}
return true;
}
bool miller_rabin_u64(unsigned long long n)
{
return miller_rabin<unsigned long long, __uint128_t>(
n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
}
template <typename mint>
bool miller_rabin(unsigned long long n, vector<unsigned long long> ws)
{
if (n <= 2)
return n == 2;
if (n % 2 == 0)
return false;
if (mint::get_mod() != n)
mint::set_mod(n);
unsigned long long d = n - 1;
while (~d & 1)
d >>= 1;
mint e = 1, rev = n - 1;
for (unsigned long long w : ws)
{
if (w % n == 0)
continue;
unsigned long long t = d;
mint y = mint(w).pow(t);
while (t != n - 1 && y != e && y != rev)
y *= y, t *= 2;
if (y != rev && t % 2 == 0)
return false;
}
return true;
}
bool is_prime(unsigned long long n)
{
using mint32 = ArbitraryLazyMontgomeryModInt<96229631>;
using mint64 = ArbitraryLazyMontgomeryModInt64bit<622196072>;
if (n <= 2)
return n == 2;
if (n % 2 == 0)
return false;
if (n < (1uLL << 30))
{
return miller_rabin<mint32>(n, {2, 7, 61});
}
else if (n < (1uLL << 62))
{
return miller_rabin<mint64>(
n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
}
else
{
return miller_rabin_u64(n);
}
}
} // namespace fast_factorize
using fast_factorize::is_prime;
/**
* @brief Miller-Rabin primality test
*/
#line 12 "prime/fast-factorize.hpp"
namespace fast_factorize
{
using u64 = uint64_t;
template <typename mint, typename T>
T pollard_rho(T n)
{
if (~n & 1)
return 2;
if (is_prime(n))
return n;
if (mint::get_mod() != n)
mint::set_mod(n);
mint R, one = 1;
auto f = [&](mint x)
{ return x * x + R; };
auto rnd_ = [&]()
{ return rng() % (n - 2) + 2; };
while (1)
{
mint x, y, ys, q = one;
R = rnd_(), y = rnd_();
T g = 1;
constexpr int m = 128;
for (int r = 1; g == 1; r <<= 1)
{
x = y;
for (int i = 0; i < r; ++i)
y = f(y);
for (int k = 0; g == 1 && k < r; k += m)
{
ys = y;
for (int i = 0; i < m && i < r - k; ++i)
q *= x - (y = f(y));
g = gcd(q.get(), n);
}
}
if (g == n)
do
g = gcd((x - (ys = f(ys))).get(), n);
while (g == 1);
if (g != n)
return g;
}
exit(1);
}
using i64 = long long;
vector<i64> inner_factorize(u64 n)
{
using mint32 = ArbitraryLazyMontgomeryModInt<452288976>;
using mint64 = ArbitraryLazyMontgomeryModInt64bit<401243123>;
if (n <= 1)
return {};
u64 p;
if (n <= (1LL << 30))
{
p = pollard_rho<mint32, uint32_t>(n);
}
else if (n <= (1LL << 62))
{
p = pollard_rho<mint64, uint64_t>(n);
}
else
{
exit(1);
}
if (p == n)
return {i64(p)};
auto l = inner_factorize(p);
auto r = inner_factorize(n / p);
copy(begin(r), end(r), back_inserter(l));
return l;
}
vector<i64> factorize(u64 n)
{
auto ret = inner_factorize(n);
sort(begin(ret), end(ret));
return ret;
}
map<i64, i64> factor_count(u64 n)
{
map<i64, i64> mp;
for (auto &x : factorize(n))
mp[x]++;
return mp;
}
vector<i64> divisors(u64 n)
{
if (n == 0)
return {};
vector<pair<i64, i64>> v;
for (auto &p : factorize(n))
{
if (v.empty() || v.back().first != p)
{
v.emplace_back(p, 1);
}
else
{
v.back().second++;
}
}
vector<i64> ret;
auto f = [&](auto rc, int i, i64 x) -> void
{
if (i == (int)v.size())
{
ret.push_back(x);
return;
}
rc(rc, i + 1, x);
for (int j = 0; j < v[i].second; j++)
rc(rc, i + 1, x *= v[i].first);
};
f(f, 0, 1);
sort(begin(ret), end(ret));
return ret;
}
} // namespace fast_factorize
using fast_factorize::divisors;
using fast_factorize::factor_count;
using fast_factorize::factorize;
/**
* @brief (Miller Rabin/Pollard's Rho)
* @docs docs/prime/fast-factorize.md
*/
void solve()
{
ll n;
cin >> n;
auto ps = factor_count(n);
ll ans = 1;
for (auto [p, c] : ps)
{
vvl dp(c + 1, vl(c + 1, 0));
dp[c][c] = 1;
rep(k, 0, c)
{
vvl ndp(c + 1, vl(c + 1, 0));
for (int i = 0; i <= c; i++)
for (int j = 0; j <= c; j++)
for (int l = 0; l <= i && l <= j; l++)
ndp[l][j - l] += dp[i][j];
dp = ndp;
}
ll sum = 0;
for (int i = 0; i <= c; i++)
sum += dp[i][0];
ans *= sum;
}
cout << ans << "\n";
}
int main()
{
int t = 1;
// cin >> t;
while (t--)
solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0