結果
問題 | No.2798 Multiple Chain |
ユーザー |
|
提出日時 | 2024-06-28 21:42:21 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 19,851 bytes |
コンパイル時間 | 7,045 ms |
コンパイル使用メモリ | 335,692 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-28 21:42:46 |
合計ジャッジ時間 | 6,928 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 51 |
ソースコード
#include <bits/stdc++.h>using namespace std;#if __has_include(<atcoder/all>)#include <atcoder/all>/*using namespace atcoder;using mint = modint998244353;using vm = vector<mint>;using vvm = vector<vm>;inline ostream &operator<<(ostream &os, const mint x){return os << x.val();};inline istream &operator>>(istream &is, mint &x){long long v;is >> v;x = v;return is;};*/#endifstruct Fast{Fast(){std::cin.tie(nullptr);ios::sync_with_stdio(false);cout << setprecision(10);}} fast;#define all(a) (a).begin(), (a).end()#define contains(a, x) ((a).find(x) != (a).end())#define rep(i, a, b) for (int i = (a); i < (int)(b); i++)#define rrep(i, a, b) for (int i = (int)(b) - 1; i >= (a); i--)#define YN(b) cout << ((b) ? "YES" : "NO") << "\n";#define Yn(b) cout << ((b) ? "Yes" : "No") << "\n";#define yn(b) cout << ((b) ? "yes" : "no") << "\n";template <class T>inline bool chmin(T &a, T b){if (a > b){a = b;return true;}return false;}template <class T>inline bool chmax(T &a, T b){if (a < b){a = b;return true;}return false;}using ll = long long;using vb = vector<bool>;using vvb = vector<vb>;using vi = vector<int>;using vvi = vector<vi>;using vl = vector<ll>;using vvl = vector<vl>;template <typename T1, typename T2>ostream &operator<<(ostream &os, pair<T1, T2> &p){os << "(" << p.first << "," << p.second << ")";return os;}template <typename T>ostream &operator<<(ostream &os, vector<T> &vec){for (int i = 0; i < (int)vec.size(); i++){os << vec[i] << (i + 1 == (int)vec.size() ? "" : " ");}return os;}template <typename T>istream &operator>>(istream &is, vector<T> &vec){for (int i = 0; i < (int)vec.size(); i++)is >> vec[i];return is;}ll floor(ll a, ll b) { return a >= 0 ? a / b : (a + 1) / b - 1; }ll ceil(ll a, ll b) { return a > 0 ? (a - 1) / b + 1 : a / b; }// https://nyaannyaan.github.io/library/prime/fast-factorize.hpp.html#line 2 "prime/fast-factorize.hpp"#include <cstdint>#include <numeric>#include <vector>using namespace std;#line 2 "internal/internal-math.hpp"#line 2 "internal/internal-type-traits.hpp"#include <type_traits>using namespace std;namespace internal{template <typename T>using is_broadly_integral =typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> ||is_same_v<T, __uint128_t>,true_type, false_type>::type;template <typename T>using is_broadly_signed =typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>,true_type, false_type>::type;template <typename T>using is_broadly_unsigned =typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>,true_type, false_type>::type;#define ENABLE_VALUE(x) \template <typename T> \constexpr bool x##_v = x<T>::value;ENABLE_VALUE(is_broadly_integral);ENABLE_VALUE(is_broadly_signed);ENABLE_VALUE(is_broadly_unsigned);#undef ENABLE_VALUE#define ENABLE_HAS_TYPE(var) \template <class, class = void> \struct has_##var : false_type \{ \}; \template <class T> \struct has_##var<T, void_t<typename T::var>> : true_type \{ \}; \template <class T> \constexpr auto has_##var##_v = has_##var<T>::value;#define ENABLE_HAS_VAR(var) \template <class, class = void> \struct has_##var : false_type \{ \}; \template <class T> \struct has_##var<T, void_t<decltype(T::var)>> : true_type \{ \}; \template <class T> \constexpr auto has_##var##_v = has_##var<T>::value;} // namespace internal#line 4 "internal/internal-math.hpp"namespace internal{#include <cassert>#include <utility>#line 10 "internal/internal-math.hpp"using namespace std;// a mod ptemplate <typename T>T safe_mod(T a, T p){a %= p;if constexpr (is_broadly_signed_v<T>){if (a < 0)a += p;}return a;}// 返り値:pair(g, x)// s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/gtemplate <typename T>pair<T, T> inv_gcd(T a, T p){static_assert(is_broadly_signed_v<T>);a = safe_mod(a, p);if (a == 0)return {p, 0};T b = p, x = 1, y = 0;while (a != 0){T q = b / a;swap(a, b %= a);swap(x, y -= q * x);}if (y < 0)y += p / b;return {b, y};}// 返り値 : a^{-1} mod p// gcd(a, p) != 1 が必要template <typename T>T inv(T a, T p){static_assert(is_broadly_signed_v<T>);a = safe_mod(a, p);T b = p, x = 1, y = 0;while (a != 0){T q = b / a;swap(a, b %= a);swap(x, y -= q * x);}assert(b == 1);return y < 0 ? y + p : y;}// T : 底の型// U : T*T がオーバーフローしない かつ 指数の型template <typename T, typename U>T modpow(T a, U n, T p){a = safe_mod(a, p);T ret = 1 % p;while (n != 0){if (n % 2 == 1)ret = U(ret) * a % p;a = U(a) * a % p;n /= 2;}return ret;}// 返り値 : pair(rem, mod)// 解なしのときは {0, 0} を返すtemplate <typename T>pair<T, T> crt(const vector<T> &r, const vector<T> &m){static_assert(is_broadly_signed_v<T>);assert(r.size() == m.size());int n = int(r.size());T r0 = 0, m0 = 1;for (int i = 0; i < n; i++){assert(1 <= m[i]);T r1 = safe_mod(r[i], m[i]), m1 = m[i];if (m0 < m1)swap(r0, r1), swap(m0, m1);if (m0 % m1 == 0){if (r0 % m1 != r1)return {0, 0};continue;}auto [g, im] = inv_gcd(m0, m1);T u1 = m1 / g;if ((r1 - r0) % g)return {0, 0};T x = (r1 - r0) / g % u1 * im % u1;r0 += x * m0;m0 *= u1;if (r0 < 0)r0 += m0;}return {r0, m0};}} // namespace internal#line 2 "misc/rng.hpp"#line 2 "internal/internal-seed.hpp"#include <chrono>using namespace std;namespace internal{unsigned long long non_deterministic_seed(){unsigned long long m =chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count();m ^= 9845834732710364265uLL;m ^= m << 24, m ^= m >> 31, m ^= m << 35;return m;}unsigned long long deterministic_seed() { return 88172645463325252UL; }// 64 bit の seed 値を生成 (手元では seed 固定)// 連続で呼び出すと同じ値が何度も返ってくるので注意// #define RANDOMIZED_SEED するとシードがランダムになるunsigned long long seed(){#if defined(NyaanLocal) && !defined(RANDOMIZED_SEED)return deterministic_seed();#elsereturn non_deterministic_seed();#endif}} // namespace internal#line 4 "misc/rng.hpp"namespace my_rand{using i64 = long long;using u64 = unsigned long long;// [0, 2^64 - 1)u64 rng(){static u64 _x = internal::seed();return _x ^= _x << 7, _x ^= _x >> 9;}// [l, r]i64 rng(i64 l, i64 r){assert(l <= r);return l + rng() % u64(r - l + 1);}// [l, r)i64 randint(i64 l, i64 r){assert(l < r);return l + rng() % u64(r - l);}// choose n numbers from [l, r) without overlappingvector<i64> randset(i64 l, i64 r, i64 n){assert(l <= r && n <= r - l);unordered_set<i64> s;for (i64 i = n; i; --i){i64 m = randint(l, r + 1 - i);if (s.find(m) != s.end())m = r - i;s.insert(m);}vector<i64> ret;for (auto &x : s)ret.push_back(x);sort(begin(ret), end(ret));return ret;}// [0.0, 1.0)double rnd() { return rng() * 5.42101086242752217004e-20; }// [l, r)double rnd(double l, double r){assert(l < r);return l + rnd() * (r - l);}template <typename T>void randshf(vector<T> &v){int n = v.size();for (int i = 1; i < n; i++)swap(v[i], v[randint(0, i + 1)]);}} // namespace my_randusing my_rand::randint;using my_rand::randset;using my_rand::randshf;using my_rand::rnd;using my_rand::rng;#line 2 "modint/arbitrary-montgomery-modint.hpp"#include <iostream>using namespace std;template <typename Int, typename UInt, typename Long, typename ULong, int id>struct ArbitraryLazyMontgomeryModIntBase{using mint = ArbitraryLazyMontgomeryModIntBase;inline static UInt mod;inline static UInt r;inline static UInt n2;static constexpr int bit_length = sizeof(UInt) * 8;static UInt get_r(){UInt ret = mod;while (mod * ret != 1)ret *= UInt(2) - mod * ret;return ret;}static void set_mod(UInt m){assert(m < (UInt(1u) << (bit_length - 2)));assert((m & 1) == 1);mod = m, n2 = -ULong(m) % m, r = get_r();}UInt a;ArbitraryLazyMontgomeryModIntBase() : a(0) {}ArbitraryLazyMontgomeryModIntBase(const Long &b): a(reduce(ULong(b % mod + mod) * n2)){};static UInt reduce(const ULong &b){return (b + ULong(UInt(b) * UInt(-r)) * mod) >> bit_length;}mint &operator+=(const mint &b){if (Int(a += b.a - 2 * mod) < 0)a += 2 * mod;return *this;}mint &operator-=(const mint &b){if (Int(a -= b.a) < 0)a += 2 * mod;return *this;}mint &operator*=(const mint &b){a = reduce(ULong(a) * b.a);return *this;}mint &operator/=(const mint &b){*this *= b.inverse();return *this;}mint operator+(const mint &b) const { return mint(*this) += b; }mint operator-(const mint &b) const { return mint(*this) -= b; }mint operator*(const mint &b) const { return mint(*this) *= b; }mint operator/(const mint &b) const { return mint(*this) /= b; }bool operator==(const mint &b) const{return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);}bool operator!=(const mint &b) const{return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);}mint operator-() const { return mint(0) - mint(*this); }mint operator+() const { return mint(*this); }mint pow(ULong n) const{mint ret(1), mul(*this);while (n > 0){if (n & 1)ret *= mul;mul *= mul, n >>= 1;}return ret;}friend ostream &operator<<(ostream &os, const mint &b){return os << b.get();}friend istream &operator>>(istream &is, mint &b){Long t;is >> t;b = ArbitraryLazyMontgomeryModIntBase(t);return (is);}mint inverse() const{Int x = get(), y = get_mod(), u = 1, v = 0;while (y > 0){Int t = x / y;swap(x -= t * y, y);swap(u -= t * v, v);}return mint{u};}UInt get() const{UInt ret = reduce(a);return ret >= mod ? ret - mod : ret;}static UInt get_mod() { return mod; }};// id に適当な乱数を割り当てて使うtemplate <int id>using ArbitraryLazyMontgomeryModInt =ArbitraryLazyMontgomeryModIntBase<int, unsigned int, long long,unsigned long long, id>;template <int id>using ArbitraryLazyMontgomeryModInt64bit =ArbitraryLazyMontgomeryModIntBase<long long, unsigned long long, __int128_t,__uint128_t, id>;#line 2 "prime/miller-rabin.hpp"#line 4 "prime/miller-rabin.hpp"using namespace std;#line 8 "prime/miller-rabin.hpp"namespace fast_factorize{template <typename T, typename U>bool miller_rabin(const T &n, vector<T> ws){if (n <= 2)return n == 2;if (n % 2 == 0)return false;T d = n - 1;while (d % 2 == 0)d /= 2;U e = 1, rev = n - 1;for (T w : ws){if (w % n == 0)continue;T t = d;U y = internal::modpow<T, U>(w, t, n);while (t != n - 1 && y != e && y != rev)y = y * y % n, t *= 2;if (y != rev && t % 2 == 0)return false;}return true;}bool miller_rabin_u64(unsigned long long n){return miller_rabin<unsigned long long, __uint128_t>(n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});}template <typename mint>bool miller_rabin(unsigned long long n, vector<unsigned long long> ws){if (n <= 2)return n == 2;if (n % 2 == 0)return false;if (mint::get_mod() != n)mint::set_mod(n);unsigned long long d = n - 1;while (~d & 1)d >>= 1;mint e = 1, rev = n - 1;for (unsigned long long w : ws){if (w % n == 0)continue;unsigned long long t = d;mint y = mint(w).pow(t);while (t != n - 1 && y != e && y != rev)y *= y, t *= 2;if (y != rev && t % 2 == 0)return false;}return true;}bool is_prime(unsigned long long n){using mint32 = ArbitraryLazyMontgomeryModInt<96229631>;using mint64 = ArbitraryLazyMontgomeryModInt64bit<622196072>;if (n <= 2)return n == 2;if (n % 2 == 0)return false;if (n < (1uLL << 30)){return miller_rabin<mint32>(n, {2, 7, 61});}else if (n < (1uLL << 62)){return miller_rabin<mint64>(n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});}else{return miller_rabin_u64(n);}}} // namespace fast_factorizeusing fast_factorize::is_prime;/*** @brief Miller-Rabin primality test*/#line 12 "prime/fast-factorize.hpp"namespace fast_factorize{using u64 = uint64_t;template <typename mint, typename T>T pollard_rho(T n){if (~n & 1)return 2;if (is_prime(n))return n;if (mint::get_mod() != n)mint::set_mod(n);mint R, one = 1;auto f = [&](mint x){ return x * x + R; };auto rnd_ = [&](){ return rng() % (n - 2) + 2; };while (1){mint x, y, ys, q = one;R = rnd_(), y = rnd_();T g = 1;constexpr int m = 128;for (int r = 1; g == 1; r <<= 1){x = y;for (int i = 0; i < r; ++i)y = f(y);for (int k = 0; g == 1 && k < r; k += m){ys = y;for (int i = 0; i < m && i < r - k; ++i)q *= x - (y = f(y));g = gcd(q.get(), n);}}if (g == n)dog = gcd((x - (ys = f(ys))).get(), n);while (g == 1);if (g != n)return g;}exit(1);}using i64 = long long;vector<i64> inner_factorize(u64 n){using mint32 = ArbitraryLazyMontgomeryModInt<452288976>;using mint64 = ArbitraryLazyMontgomeryModInt64bit<401243123>;if (n <= 1)return {};u64 p;if (n <= (1LL << 30)){p = pollard_rho<mint32, uint32_t>(n);}else if (n <= (1LL << 62)){p = pollard_rho<mint64, uint64_t>(n);}else{exit(1);}if (p == n)return {i64(p)};auto l = inner_factorize(p);auto r = inner_factorize(n / p);copy(begin(r), end(r), back_inserter(l));return l;}vector<i64> factorize(u64 n){auto ret = inner_factorize(n);sort(begin(ret), end(ret));return ret;}map<i64, i64> factor_count(u64 n){map<i64, i64> mp;for (auto &x : factorize(n))mp[x]++;return mp;}vector<i64> divisors(u64 n){if (n == 0)return {};vector<pair<i64, i64>> v;for (auto &p : factorize(n)){if (v.empty() || v.back().first != p){v.emplace_back(p, 1);}else{v.back().second++;}}vector<i64> ret;auto f = [&](auto rc, int i, i64 x) -> void{if (i == (int)v.size()){ret.push_back(x);return;}rc(rc, i + 1, x);for (int j = 0; j < v[i].second; j++)rc(rc, i + 1, x *= v[i].first);};f(f, 0, 1);sort(begin(ret), end(ret));return ret;}} // namespace fast_factorizeusing fast_factorize::divisors;using fast_factorize::factor_count;using fast_factorize::factorize;/*** @brief 高速素因数分解(Miller Rabin/Pollard's Rho)* @docs docs/prime/fast-factorize.md*/void solve(){ll n;cin >> n;auto ps = factor_count(n);ll ans = 1;for (auto [p, c] : ps){vvl dp(c + 1, vl(c + 1, 0));dp[c][c] = 1;rep(k, 0, c){vvl ndp(c + 1, vl(c + 1, 0));for (int i = 0; i <= c; i++)for (int j = 0; j <= c; j++)for (int l = 0; l <= i && l <= j; l++)ndp[l][j - l] += dp[i][j];dp = ndp;}ll sum = 0;for (int i = 0; i <= c; i++)sum += dp[i][0];ans *= sum;}cout << ans << "\n";}int main(){int t = 1;// cin >> t;while (t--)solve();}