結果
問題 | No.2798 Multiple Chain |
ユーザー | Rubikun |
提出日時 | 2024-06-28 21:59:26 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,858 ms / 2,000 ms |
コード長 | 5,818 bytes |
コンパイル時間 | 2,579 ms |
コンパイル使用メモリ | 223,208 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-06-28 21:59:35 |
合計ジャッジ時間 | 8,209 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 6 ms
6,944 KB |
testcase_03 | AC | 1 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 90 ms
6,944 KB |
testcase_06 | AC | 17 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,940 KB |
testcase_10 | AC | 1 ms
6,944 KB |
testcase_11 | AC | 1 ms
6,944 KB |
testcase_12 | AC | 1 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,944 KB |
testcase_14 | AC | 7 ms
6,940 KB |
testcase_15 | AC | 66 ms
6,944 KB |
testcase_16 | AC | 77 ms
6,944 KB |
testcase_17 | AC | 74 ms
6,940 KB |
testcase_18 | AC | 103 ms
6,940 KB |
testcase_19 | AC | 109 ms
6,940 KB |
testcase_20 | AC | 2 ms
6,944 KB |
testcase_21 | AC | 1 ms
6,940 KB |
testcase_22 | AC | 1 ms
6,944 KB |
testcase_23 | AC | 2 ms
6,940 KB |
testcase_24 | AC | 1 ms
6,944 KB |
testcase_25 | AC | 3 ms
6,944 KB |
testcase_26 | AC | 2 ms
6,944 KB |
testcase_27 | AC | 2 ms
6,940 KB |
testcase_28 | AC | 2 ms
6,944 KB |
testcase_29 | AC | 2 ms
6,940 KB |
testcase_30 | AC | 2 ms
6,940 KB |
testcase_31 | AC | 2 ms
6,940 KB |
testcase_32 | AC | 2 ms
6,940 KB |
testcase_33 | AC | 2 ms
6,944 KB |
testcase_34 | AC | 3 ms
6,940 KB |
testcase_35 | AC | 2 ms
6,944 KB |
testcase_36 | AC | 2 ms
6,940 KB |
testcase_37 | AC | 2 ms
6,940 KB |
testcase_38 | AC | 2 ms
6,944 KB |
testcase_39 | AC | 2 ms
6,940 KB |
testcase_40 | AC | 112 ms
6,940 KB |
testcase_41 | AC | 880 ms
6,940 KB |
testcase_42 | AC | 1,858 ms
6,948 KB |
testcase_43 | AC | 748 ms
6,944 KB |
testcase_44 | AC | 242 ms
6,944 KB |
testcase_45 | AC | 1 ms
6,944 KB |
testcase_46 | AC | 2 ms
6,940 KB |
testcase_47 | AC | 2 ms
6,940 KB |
testcase_48 | AC | 2 ms
6,940 KB |
testcase_49 | AC | 2 ms
6,944 KB |
testcase_50 | AC | 1 ms
6,940 KB |
testcase_51 | AC | 2 ms
6,944 KB |
testcase_52 | AC | 2 ms
6,940 KB |
testcase_53 | AC | 1 ms
6,944 KB |
コンパイルメッセージ
main.cpp:29:9: warning: #pragma once in main file 29 | #pragma once | ^~~~ main.cpp:82:9: warning: #pragma once in main file 82 | #pragma once | ^~~~ main.cpp:94:9: warning: #pragma once in main file 94 | #pragma once | ^~~~
ソースコード
#include <bits/stdc++.h> using namespace std; typedef long long ll; template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; } template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; } #define all(x) (x).begin(),(x).end() #define fi first #define se second #define mp make_pair #define si(x) int(x.size()) const int mod=998244353,MAX=300005,INF=15<<26; /** * Author: chilli, Ramchandra Apte, Noam527, Simon Lindholm * Date: 2019-04-24 * License: CC0 * Source: https://github.com/RamchandraApte/OmniTemplate/blob/master/modulo.hpp… * Description: Calculate $a\cdot b\bmod c$ (or $a^b \bmod c$) for $0 \le a, b \le c \le 7.2\cdot 10^{18}$. * Time: O(1) for \texttt{modmul}, O(\log b) for \texttt{modpow} * Status: stress-tested, proven correct * Details: * This runs ~2x faster than the naive (__int128_t)a * b % M. * A proof of correctness is in doc/modmul-proof.tex. An earlier version of the proof, * from when the code used a * b / (long double)M, is in doc/modmul-proof.md. * The proof assumes that long doubles are implemented as x87 80-bit floats; if they * are 64-bit, as on e.g. MSVC, the implementation is only valid for * $0 \le a, b \le c < 2^{52} \approx 4.5 \cdot 10^{15}$. */ #pragma once typedef unsigned long long ull; ull modmul(ull a, ull b, ull M) { ll ret = a * b - M * ull(1.L / M * a * b); return ret + M * (ret < 0) - M * (ret >= (ll)M); } ull modpow(ull b, ull e, ull mod) { ull ans = 1; for (; e; b = modmul(b, b, mod), e /= 2) if (e & 1) ans = modmul(ans, b, mod); return ans; } /** * Author: chilli, SJTU, pajenegod * Date: 2020-03-04 * License: CC0 * Source: own * Description: Pollard-rho randomized factorization algorithm. Returns prime * factors of a number, in arbitrary order (e.g. 2299 -> \{11, 19, 11\}). * Time: $O(n^{1/4})$, less for numbers with small factors. * Status: stress-tested * * Details: This implementation uses the improvement described here * (https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm#Variants…), where * one can accumulate gcd calls by some factor (40 chosen here through * exhaustive testing). This improves performance by approximately 6-10x * depending on the inputs and speed of gcd. Benchmark found here: * (https://ideone.com/nGGD9T) * * GCD can be improved by a factor of 1.75x using Binary GCD * (https://lemire.me/blog/2013/12/26/fastest-way-to-compute-the-greatest-common-divisor/…). * However, with the gcd accumulation the bottleneck moves from the gcd calls * to the modmul. As GCD only constitutes ~12% of runtime, speeding it up * doesn't matter so much. * * This code can probably be sped up by using a faster mod mul - potentially * montgomery reduction on 128 bit integers. * Alternatively, one can use a quadratic sieve for an asymptotic improvement, * which starts being faster in practice around 1e13. * * Brent's cycle finding algorithm was tested, but doesn't reduce modmul calls * significantly. * * Subtle implementation notes: * - we operate on residues in [1, n]; modmul can be proven to work for those * - prd starts off as 2 to handle the case n = 4; it's harmless for other n * since we're guaranteed that n > 2. (Pollard rho has problems with prime * powers in general, but all larger ones happen to work.) * - t starts off as 30 to make the first gcd check come earlier, as an * optimization for small numbers. */ #pragma once /** * Author: chilli, c1729, Simon Lindholm * Date: 2019-03-28 * License: CC0 * Source: Wikipedia, https://miller-rabin.appspot.com * Description: Deterministic Miller-Rabin primality test. * Guaranteed to work for numbers up to $7 \cdot 10^{18}$; for larger numbers, use Python and extend A randomly. * Time: 7 times the complexity of $a^b \mod c$. * Status: Stress-tested */ #pragma once bool isPrime(ull n) { if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3; ull A[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}, s = __builtin_ctzll(n-1), d = n >> s; for (ull a : A) { // ^ count trailing zeroes ull p = modpow(a%n, d, n), i = s; while (p != 1 && p != n - 1 && a % n && i--) p = modmul(p, p, n); if (p != n-1 && i != s) return 0; } return 1; } ull pollard(ull n) { auto f = [n](ull x) { return modmul(x, x, n) + 1; }; ull x = 0, y = 0, t = 30, prd = 2, i = 1, q; while (t++ % 40 || __gcd(prd, n) == 1) { if (x == y) x = ++i, y = f(x); if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q; x = f(x), y = f(f(y)); } return __gcd(prd, n); } vector<ull> factor(ull n) { if (n == 1) return {}; if (isPrime(n)) return {n}; ull x = pollard(n); auto l = factor(x), r = factor(n / x); l.insert(l.end(), all(r)); return l; } ll ans; vector<pair<ll,ll>> S; vector<ll> T; void DFS(int u,ll x){ if(u==si(S)){ T.push_back(x); return; } for(int q=0;q<=S[u].se;q++){ DFS(u+1,x); x*=S[u].fi; } } void solve(ll la,ll rem){ if(rem==1){ ans++; return; } if(la>rem) return; if(la==rem){ ans++; return; } if(rem%la) return; if((rem/la)%la){ if(rem%la==0) ans++; return; } auto it=lower_bound(all(T),la); while(it!=T.end()){ ll x=*it; if(x%la==0&&rem%x==0){ solve(x,rem/x); } if(x>rem) return; it++; } } int main(){ std::ifstream in("text.txt"); std::cin.rdbuf(in.rdbuf()); cin.tie(0); ios::sync_with_stdio(false); ll N;cin>>N; auto fa=factor(N); //return 0; map<ll,ll> MA; for(ll x:fa) MA[x]++; for(auto [a,b]:MA) S.push_back(mp(a,b)); DFS(0,1); sort(all(T)); for(ll x:T){ if(x==1) continue; solve(x,N/x); } cout<<ans<<endl; }