結果
| 問題 |
No.2798 Multiple Chain
|
| コンテスト | |
| ユーザー |
dp_ijk
|
| 提出日時 | 2024-06-28 22:04:46 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 70 ms / 2,000 ms |
| コード長 | 2,046 bytes |
| コンパイル時間 | 178 ms |
| コンパイル使用メモリ | 82,364 KB |
| 実行使用メモリ | 64,908 KB |
| 最終ジャッジ日時 | 2024-06-28 22:04:57 |
| 合計ジャッジ時間 | 3,570 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 51 |
ソースコード
def gcd(a, b):
while b:
a, b = b, a%b
return a
def isPrimeMR(n):
d = n-1
d = d//(d& -d)
L = [2]
for a in L:
t = d
y = pow(a, t, n)
if y == 1: continue
while y != n-1:
y = (y*y)%n
if y == 1 or t == n-1: return 0
t <<= 1
return 1
def findFactorRho(n):
m = 1<<n.bit_length() // 8
for c in range(1, 99):
f = lambda x: (x*x + c) % n
y, r, q, g = 2, 1, 1, 1
while g == 1:
x = y
for i in range(r):
y = f(y)
k = 0
while k < r and g == 1:
ys = y
for i in range(min(m, r-k)):
y = f(y)
q = q * abs(x-y) % n
g = gcd(q, n)
k += m
r <<= 1
if g == n:
g = 1
while g == 1:
ys = f(ys)
g = gcd(abs(x-ys), n)
if g < n:
if isPrimeMR(g): return g
elif isPrimeMR(n//g): return n//g
return findFactorRho(g)
def primeFactor(n):
i = 2
ret = {}
rhoFlg = 0
while i*i <= n:
k = 0
while n%i == 0:
n //= i
k += 1
if k: ret[i] = k
i += 1 + i%2
if i == 101 and n >= 2**20:
while n > 1:
if isPrimeMR(n):
ret[n], n = 1, 1
else:
rhoFlg = 1
j = findFactorRho(n)
k = 0
while n%j == 0:
n //= j
k += 1
ret[j] = k
if n > 1: ret[n] = 1
if rhoFlg: ret = {x: ret[x] for x in sorted(ret)}
return ret
N = int(input())
dps = {}
U = 30
dp = [0]*U
dp[0] = 1
dps[0] = dp
for d in range(1, U):
ndp = dp[:]
for i in range(U):
if i+d >= U:
continue
ndp[i+d] += ndp[i]
dp = ndp
dps[d] = dp
F = primeFactor(N)
Z = [0]*U
for L in range(1, U):
term = 1
dp = dps[L]
for p, e in F.items():
term *= dp[e]
Z[L] = term
M = Z[:]
for i in range(U-1, 0, -1):
M[i] -= M[i-1]
ans = sum(M)
print(ans)
dp_ijk