結果
問題 | No.2798 Multiple Chain |
ユーザー |
|
提出日時 | 2024-06-28 22:43:46 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 8 ms / 2,000 ms |
コード長 | 28,242 bytes |
コンパイル時間 | 2,696 ms |
コンパイル使用メモリ | 184,716 KB |
最終ジャッジ日時 | 2025-02-22 01:18:15 |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 51 |
ソースコード
#include <algorithm>#include <array>#include <bitset>#include <cassert>#include <chrono>#include <cmath>#include <complex>#include <deque>#include <forward_list>#include <fstream>#include <functional>#include <iomanip>#include <ios>#include <iostream>#include <limits>#include <list>#include <map>#include <memory>#include <numeric>#include <optional>#include <queue>#include <random>#include <set>#include <sstream>#include <stack>#include <string>#include <tuple>#include <type_traits>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>#ifdef RUTHEN_LOCAL#include <debug.hpp>#else#define show(x) true#endif// type definitionusing i64 = long long;using u32 = unsigned int;using u64 = unsigned long long;using f32 = float;using f64 = double;using f128 = long double;template <class T> using pque = std::priority_queue<T>;template <class T> using pqueg = std::priority_queue<T, std::vector<T>, std::greater<T>>;// overload#define overload4(_1, _2, _3, _4, name, ...) name#define overload3(_1, _2, _3, name, ...) name#define overload2(_1, _2, name, ...) name// for loop#define REP1(a) for (long long _ = 0; _ < (a); _++)#define REP2(i, a) for (long long i = 0; i < (a); i++)#define REP3(i, a, b) for (long long i = (a); i < (b); i++)#define REP4(i, a, b, c) for (long long i = (a); i < (b); i += (c))#define REP(...) overload4(__VA_ARGS__, REP4, REP3, REP2, REP1)(__VA_ARGS__)#define RREP1(a) for (long long _ = (a)-1; _ >= 0; _--)#define RREP2(i, a) for (long long i = (a)-1; i >= 0; i--)#define RREP3(i, a, b) for (long long i = (b)-1; i >= (a); i--)#define RREP(...) overload3(__VA_ARGS__, RREP3, RREP2, RREP1)(__VA_ARGS__)#define FORE1(x, a) for (auto &&x : a)#define FORE2(x, y, a) for (auto &&[x, y] : a)#define FORE3(x, y, z, a) for (auto &&[x, y, z] : a)#define FORE(...) overload4(__VA_ARGS__, FORE3, FORE2, FORE1)(__VA_ARGS__)#define FORSUB(t, s) for (long long t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))// function#define ALL(a) (a).begin(), (a).end()#define RALL(a) (a).rbegin(), (a).rend()#define SORT(a) std::sort((a).begin(), (a).end())#define RSORT(a) std::sort((a).rbegin(), (a).rend())#define REV(a) std::reverse((a).begin(), (a).end())#define UNIQUE(a) \std::sort((a).begin(), (a).end()); \(a).erase(std::unique((a).begin(), (a).end()), (a).end())#define LEN(a) (int)((a).size())#define MIN(a) *std::min_element((a).begin(), (a).end())#define MAX(a) *std::max_element((a).begin(), (a).end())#define SUM1(a) std::accumulate((a).begin(), (a).end(), 0LL)#define SUM2(a, x) std::accumulate((a).begin(), (a).end(), (x))#define SUM(...) overload2(__VA_ARGS__, SUM2, SUM1)(__VA_ARGS__)#define LB(a, x) std::distance((a).begin(), std::lower_bound((a).begin(), (a).end(), (x)))#define UB(a, x) std::distance((a).begin(), std::upper_bound((a).begin(), (a).end(), (x)))template <class T, class U> inline bool chmin(T &a, const U &b) { return (a > T(b) ? a = b, 1 : 0); }template <class T, class U> inline bool chmax(T &a, const U &b) { return (a < T(b) ? a = b, 1 : 0); }template <class T, class S> inline T floor(const T x, const S y) {assert(y);return (y < 0 ? floor(-x, -y) : (x > 0 ? x / y : x / y - (x % y == 0 ? 0 : 1)));}template <class T, class S> inline T ceil(const T x, const S y) {assert(y);return (y < 0 ? ceil(-x, -y) : (x > 0 ? (x + y - 1) / y : x / y));}template <class T, class S> std::pair<T, T> inline divmod(const T x, const S y) {T q = floor(x, y);return {q, x - q * y};}// 10 ^ nconstexpr long long TEN(int n) { return (n == 0) ? 1 : 10LL * TEN(n - 1); }// 1 + 2 + ... + n#define TRI1(n) ((n) * ((n) + 1LL) / 2)// l + (l + 1) + ... + r#define TRI2(l, r) (((l) + (r)) * ((r) - (l) + 1LL) / 2)#define TRI(...) overload2(__VA_ARGS__, TRI2, TRI1)(__VA_ARGS__)// bit operation// bit[i] (= 0 or 1)#define IBIT(bit, i) (((bit) >> (i)) & 1)// (0, 1, 2, 3, 4) -> (0, 1, 3, 7, 15)#define MASK(n) ((1LL << (n)) - 1)#define POW2(n) (1LL << (n))// (0, 1, 2, 3, 4) -> (0, 1, 1, 2, 1)int popcnt(int x) { return __builtin_popcount(x); }int popcnt(u32 x) { return __builtin_popcount(x); }int popcnt(i64 x) { return __builtin_popcountll(x); }int popcnt(u64 x) { return __builtin_popcountll(x); }// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }int topbit(i64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }int lowbit(i64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }// binary searchtemplate <class T, class F> T bin_search(T ok, T ng, F &f) {while ((ok > ng ? ok - ng : ng - ok) > 1) {T md = (ng + ok) >> 1;(f(md) ? ok : ng) = md;}return ok;}template <class T, class F> T bin_search_real(T ok, T ng, F &f, const int iter = 100) {for (int _ = 0; _ < iter; _++) {T md = (ng + ok) / 2;(f(md) ? ok : ng) = md;}return ok;}// rotate matrix counterclockwise by pi / 2template <class T> void rot(std::vector<std::vector<T>> &a) {if ((int)(a.size()) == 0) return;if ((int)(a[0].size()) == 0) return;int n = (int)(a.size()), m = (int)(a[0].size());std::vector res(m, std::vector<T>(n));for (int i = 0; i < n; i++) {for (int j = 0; j < m; j++) {res[m - 1 - j][i] = a[i][j];}}a.swap(res);}// const valueconstexpr int dx[8] = {1, 0, -1, 0, 1, -1, -1, 1};constexpr int dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};// infinitytemplate <class T> constexpr T INF = 0;template <> constexpr int INF<int> = 1'000'000'000; // 1e9template <> constexpr i64 INF<i64> = i64(INF<int>) * INF<int> * 2; // 2e18template <> constexpr u32 INF<u32> = INF<int>; // 1e9template <> constexpr u64 INF<u64> = INF<i64>; // 2e18template <> constexpr f32 INF<f32> = INF<i64>; // 2e18template <> constexpr f64 INF<f64> = INF<i64>; // 2e18template <> constexpr f128 INF<f128> = INF<i64>; // 2e18// I/O// inputtemplate <class T> std::istream &operator>>(std::istream &is, std::vector<T> &v) {for (auto &&i : v) is >> i;return is;}template <class... T> void in(T &...a) { (std::cin >> ... >> a); }void scan() {}template <class Head, class... Tail> void scan(Head &head, Tail &...tail) {in(head);scan(tail...);}// input macro#define INT(...) \int __VA_ARGS__; \scan(__VA_ARGS__)#define I64(...) \i64 __VA_ARGS__; \scan(__VA_ARGS__)#define U32(...) \u32 __VA_ARGS__; \scan(__VA_ARGS__)#define U64(...) \u64 __VA_ARGS__; \scan(__VA_ARGS__)#define F32(...) \f32 __VA_ARGS__; \scan(__VA_ARGS__)#define F64(...) \f64 __VA_ARGS__; \scan(__VA_ARGS__)#define F128(...) \f128 __VA_ARGS__; \scan(__VA_ARGS__)#define STR(...) \std::string __VA_ARGS__; \scan(__VA_ARGS__)#define CHR(...) \char __VA_ARGS__; \scan(__VA_ARGS__)#define VEC(type, name, size) \std::vector<type> name(size); \scan(name)#define VEC2(type, name1, name2, size) \std::vector<type> name1(size), name2(size); \for (int i = 0; i < size; i++) scan(name1[i], name2[i])#define VEC3(type, name1, name2, name3, size) \std::vector<type> name1(size), name2(size), name3(size); \for (int i = 0; i < size; i++) scan(name1[i], name2[i], name3[i])#define VEC4(type, name1, name2, name3, name4, size) \std::vector<type> name1(size), name2(size), name3(size), name4(size); \for (int i = 0; i < size; i++) scan(name1[i], name2[i], name3[i], name4[i])#define VV(type, name, h, w) \std::vector name((h), std::vector<type>((w))); \scan(name)// outputtemplate <class T> std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {auto n = v.size();for (size_t i = 0; i < n; i++) {if (i) os << ' ';os << v[i];}return os;}template <class... T> void out(const T &...a) { (std::cout << ... << a); }void print() { out('\n'); }template <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {out(head);if (sizeof...(Tail)) out(' ');print(tail...);}// for interactive problemsvoid printi() { std::cout << std::endl; }template <class Head, class... Tail> void printi(Head &&head, Tail &&...tail) {out(head);if (sizeof...(Tail)) out(' ');printi(tail...);}// bool outputvoid YES(bool t = 1) { print(t ? "YES" : "NO"); }void Yes(bool t = 1) { print(t ? "Yes" : "No"); }void yes(bool t = 1) { print(t ? "yes" : "no"); }void NO(bool t = 1) { YES(!t); }void No(bool t = 1) { Yes(!t); }void no(bool t = 1) { yes(!t); }void POSSIBLE(bool t = 1) { print(t ? "POSSIBLE" : "IMPOSSIBLE"); }void Possible(bool t = 1) { print(t ? "Possible" : "Impossible"); }void possible(bool t = 1) { print(t ? "possible" : "impossible"); }void IMPOSSIBLE(bool t = 1) { POSSIBLE(!t); }void Impossible(bool t = 1) { Possible(!t); }void impossible(bool t = 1) { possible(!t); }void FIRST(bool t = 1) { print(t ? "FIRST" : "SECOND"); }void First(bool t = 1) { print(t ? "First" : "Second"); }void first(bool t = 1) { print(t ? "first" : "second"); }void SECOND(bool t = 1) { FIRST(!t); }void Second(bool t = 1) { First(!t); }void second(bool t = 1) { first(!t); }// I/O speed upstruct SetUpIO {SetUpIO() {std::ios::sync_with_stdio(false);std::cin.tie(0);std::cout << std::fixed << std::setprecision(15);}} set_up_io;using namespace std;// https://nyaannyaan.github.io/library/prime/fast-factorize.hpp#include <cstdint>using namespace std;using namespace std;namespace internal {template <typename T> using is_broadly_integral = typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> || is_same_v<T, __uint128_t>,true_type, false_type>::type;template <typename T> using is_broadly_signed = typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>, true_type, false_type>::type;template <typename T> using is_broadly_unsigned = typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>, true_type, false_type>::type;#define ENABLE_VALUE(x) template <typename T> constexpr bool x##_v = x<T>::value;ENABLE_VALUE(is_broadly_integral);ENABLE_VALUE(is_broadly_signed);ENABLE_VALUE(is_broadly_unsigned);#undef ENABLE_VALUE#define ENABLE_HAS_TYPE(var) \template <class, class = void> struct has_##var : false_type {}; \template <class T> struct has_##var<T, void_t<typename T::var>> : true_type {}; \template <class T> constexpr auto has_##var##_v = has_##var<T>::value;#define ENABLE_HAS_VAR(var) \template <class, class = void> struct has_##var : false_type {}; \template <class T> struct has_##var<T, void_t<decltype(T::var)>> : true_type {}; \template <class T> constexpr auto has_##var##_v = has_##var<T>::value;} // namespace internalnamespace internal {using namespace std;// a mod ptemplate <typename T> T safe_mod(T a, T p) {a %= p;if constexpr (is_broadly_signed_v<T>) {if (a < 0) a += p;}return a;}// 返り値:pair(g, x)// s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/gtemplate <typename T> pair<T, T> inv_gcd(T a, T p) {static_assert(is_broadly_signed_v<T>);a = safe_mod(a, p);if (a == 0) return {p, 0};T b = p, x = 1, y = 0;while (a != 0) {T q = b / a;swap(a, b %= a);swap(x, y -= q * x);}if (y < 0) y += p / b;return {b, y};}// 返り値 : a^{-1} mod p// gcd(a, p) != 1 が必要template <typename T> T inv(T a, T p) {static_assert(is_broadly_signed_v<T>);a = safe_mod(a, p);T b = p, x = 1, y = 0;while (a != 0) {T q = b / a;swap(a, b %= a);swap(x, y -= q * x);}assert(b == 1);return y < 0 ? y + p : y;}// T : 底の型// U : T*T がオーバーフローしない かつ 指数の型template <typename T, typename U> T modpow(T a, U n, T p) {a = safe_mod(a, p);T ret = 1 % p;while (n != 0) {if (n % 2 == 1) ret = U(ret) * a % p;a = U(a) * a % p;n /= 2;}return ret;}// 返り値 : pair(rem, mod)// 解なしのときは {0, 0} を返すtemplate <typename T> pair<T, T> crt(const vector<T> &r, const vector<T> &m) {static_assert(is_broadly_signed_v<T>);assert(r.size() == m.size());int n = int(r.size());T r0 = 0, m0 = 1;for (int i = 0; i < n; i++) {assert(1 <= m[i]);T r1 = safe_mod(r[i], m[i]), m1 = m[i];if (m0 < m1) swap(r0, r1), swap(m0, m1);if (m0 % m1 == 0) {if (r0 % m1 != r1) return {0, 0};continue;}auto [g, im] = inv_gcd(m0, m1);T u1 = m1 / g;if ((r1 - r0) % g) return {0, 0};T x = (r1 - r0) / g % u1 * im % u1;r0 += x * m0;m0 *= u1;if (r0 < 0) r0 += m0;}return {r0, m0};}} // namespace internalusing namespace std;namespace internal {unsigned long long non_deterministic_seed() {unsigned long long m = chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count();m ^= 9845834732710364265uLL;m ^= m << 24, m ^= m >> 31, m ^= m << 35;return m;}unsigned long long deterministic_seed() { return 88172645463325252UL; }// 64 bit の seed 値を生成 (手元では seed 固定)// 連続で呼び出すと同じ値が何度も返ってくるので注意// #define RANDOMIZED_SEED するとシードがランダムになるunsigned long long seed() {#if defined(NyaanLocal) && !defined(RANDOMIZED_SEED)return deterministic_seed();#elsereturn non_deterministic_seed();#endif}} // namespace internalnamespace my_rand {using i64 = long long;using u64 = unsigned long long;// [0, 2^64 - 1)u64 rng() {static u64 _x = internal::seed();return _x ^= _x << 7, _x ^= _x >> 9;}// [l, r]i64 rng(i64 l, i64 r) {assert(l <= r);return l + rng() % u64(r - l + 1);}// [l, r)i64 randint(i64 l, i64 r) {assert(l < r);return l + rng() % u64(r - l);}// choose n numbers from [l, r) without overlappingvector<i64> randset(i64 l, i64 r, i64 n) {assert(l <= r && n <= r - l);unordered_set<i64> s;for (i64 i = n; i; --i) {i64 m = randint(l, r + 1 - i);if (s.find(m) != s.end()) m = r - i;s.insert(m);}vector<i64> ret;for (auto &x : s) ret.push_back(x);sort(begin(ret), end(ret));return ret;}// [0.0, 1.0)double rnd() { return rng() * 5.42101086242752217004e-20; }// [l, r)double rnd(double l, double r) {assert(l < r);return l + rnd() * (r - l);}template <typename T> void randshf(vector<T> &v) {int n = v.size();for (int i = 1; i < n; i++) swap(v[i], v[randint(0, i + 1)]);}} // namespace my_randusing my_rand::randint;using my_rand::randset;using my_rand::randshf;using my_rand::rnd;using my_rand::rng;using namespace std;template <typename Int, typename UInt, typename Long, typename ULong, int id> struct ArbitraryLazyMontgomeryModIntBase {using mint = ArbitraryLazyMontgomeryModIntBase;inline static UInt mod;inline static UInt r;inline static UInt n2;static constexpr int bit_length = sizeof(UInt) * 8;static UInt get_r() {UInt ret = mod;while (mod * ret != 1) ret *= UInt(2) - mod * ret;return ret;}static void set_mod(UInt m) {assert(m < (UInt(1u) << (bit_length - 2)));assert((m & 1) == 1);mod = m, n2 = -ULong(m) % m, r = get_r();}UInt a;ArbitraryLazyMontgomeryModIntBase() : a(0) {}ArbitraryLazyMontgomeryModIntBase(const Long &b) : a(reduce(ULong(b % mod + mod) * n2)){};static UInt reduce(const ULong &b) { return (b + ULong(UInt(b) * UInt(-r)) * mod) >> bit_length; }mint &operator+=(const mint &b) {if (Int(a += b.a - 2 * mod) < 0) a += 2 * mod;return *this;}mint &operator-=(const mint &b) {if (Int(a -= b.a) < 0) a += 2 * mod;return *this;}mint &operator*=(const mint &b) {a = reduce(ULong(a) * b.a);return *this;}mint &operator/=(const mint &b) {*this *= b.inverse();return *this;}mint operator+(const mint &b) const { return mint(*this) += b; }mint operator-(const mint &b) const { return mint(*this) -= b; }mint operator*(const mint &b) const { return mint(*this) *= b; }mint operator/(const mint &b) const { return mint(*this) /= b; }bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); }bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); }mint operator-() const { return mint(0) - mint(*this); }mint operator+() const { return mint(*this); }mint pow(ULong n) const {mint ret(1), mul(*this);while (n > 0) {if (n & 1) ret *= mul;mul *= mul, n >>= 1;}return ret;}friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); }friend istream &operator>>(istream &is, mint &b) {Long t;is >> t;b = ArbitraryLazyMontgomeryModIntBase(t);return (is);}mint inverse() const {Int x = get(), y = get_mod(), u = 1, v = 0;while (y > 0) {Int t = x / y;swap(x -= t * y, y);swap(u -= t * v, v);}return mint{u};}UInt get() const {UInt ret = reduce(a);return ret >= mod ? ret - mod : ret;}static UInt get_mod() { return mod; }};// id に適当な乱数を割り当てて使うtemplate <int id> using ArbitraryLazyMontgomeryModInt = ArbitraryLazyMontgomeryModIntBase<int, unsigned int, long long, unsigned long long, id>;template <int id> using ArbitraryLazyMontgomeryModInt64bit = ArbitraryLazyMontgomeryModIntBase<long long, unsigned long long, __int128_t, __uint128_t, id>;using namespace std;namespace fast_factorize {template <typename T, typename U> bool miller_rabin(const T &n, vector<T> ws) {if (n <= 2) return n == 2;if (n % 2 == 0) return false;T d = n - 1;while (d % 2 == 0) d /= 2;U e = 1, rev = n - 1;for (T w : ws) {if (w % n == 0) continue;T t = d;U y = internal::modpow<T, U>(w, t, n);while (t != n - 1 && y != e && y != rev) y = y * y % n, t *= 2;if (y != rev && t % 2 == 0) return false;}return true;}bool miller_rabin_u64(unsigned long long n) { return miller_rabin<unsigned long long, __uint128_t>(n, {2, 325, 9375, 28178, 450775, 9780504,1795265022}); }template <typename mint> bool miller_rabin(unsigned long long n, vector<unsigned long long> ws) {if (n <= 2) return n == 2;if (n % 2 == 0) return false;if (mint::get_mod() != n) mint::set_mod(n);unsigned long long d = n - 1;while (~d & 1) d >>= 1;mint e = 1, rev = n - 1;for (unsigned long long w : ws) {if (w % n == 0) continue;unsigned long long t = d;mint y = mint(w).pow(t);while (t != n - 1 && y != e && y != rev) y *= y, t *= 2;if (y != rev && t % 2 == 0) return false;}return true;}bool is_prime(unsigned long long n) {using mint32 = ArbitraryLazyMontgomeryModInt<96229631>;using mint64 = ArbitraryLazyMontgomeryModInt64bit<622196072>;if (n <= 2) return n == 2;if (n % 2 == 0) return false;if (n < (1uLL << 30)) {return miller_rabin<mint32>(n, {2, 7, 61});} else if (n < (1uLL << 62)) {return miller_rabin<mint64>(n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});} else {return miller_rabin_u64(n);}}} // namespace fast_factorizeusing fast_factorize::is_prime;/*** @brief Miller-Rabin primality test*/namespace fast_factorize {using u64 = uint64_t;template <typename mint, typename T> T pollard_rho(T n) {if (~n & 1) return 2;if (is_prime(n)) return n;if (mint::get_mod() != n) mint::set_mod(n);mint R, one = 1;auto f = [&](mint x) { return x * x + R; };auto rnd_ = [&]() { return rng() % (n - 2) + 2; };while (1) {mint x, y, ys, q = one;R = rnd_(), y = rnd_();T g = 1;constexpr int m = 128;for (int r = 1; g == 1; r <<= 1) {x = y;for (int i = 0; i < r; ++i) y = f(y);for (int k = 0; g == 1 && k < r; k += m) {ys = y;for (int i = 0; i < m && i < r - k; ++i) q *= x - (y = f(y));g = gcd(q.get(), n);}}if (g == n) dog = gcd((x - (ys = f(ys))).get(), n);while (g == 1);if (g != n) return g;}exit(1);}using i64 = long long;vector<i64> inner_factorize(u64 n) {using mint32 = ArbitraryLazyMontgomeryModInt<452288976>;using mint64 = ArbitraryLazyMontgomeryModInt64bit<401243123>;if (n <= 1) return {};u64 p;if (n <= (1LL << 30)) {p = pollard_rho<mint32, uint32_t>(n);} else if (n <= (1LL << 62)) {p = pollard_rho<mint64, uint64_t>(n);} else {exit(1);}if (p == n) return {i64(p)};auto l = inner_factorize(p);auto r = inner_factorize(n / p);copy(begin(r), end(r), back_inserter(l));return l;}vector<i64> factorize(u64 n) {auto ret = inner_factorize(n);sort(begin(ret), end(ret));return ret;}map<i64, i64> factor_count(u64 n) {map<i64, i64> mp;for (auto &x : factorize(n)) mp[x]++;return mp;}vector<i64> divisors(u64 n) {if (n == 0) return {};vector<pair<i64, i64>> v;for (auto &p : factorize(n)) {if (v.empty() || v.back().first != p) {v.emplace_back(p, 1);} else {v.back().second++;}}vector<i64> ret;auto f = [&](auto rc, int i, i64 x) -> void {if (i == (int)v.size()) {ret.push_back(x);return;}rc(rc, i + 1, x);for (int j = 0; j < v[i].second; j++) rc(rc, i + 1, x *= v[i].first);};f(f, 0, 1);sort(begin(ret), end(ret));return ret;}} // namespace fast_factorizeusing fast_factorize::divisors;using fast_factorize::factor_count;using fast_factorize::factorize;/*** @brief 高速素因数分解(Miller Rabin/Pollard's Rho)* @docs docs/prime/fast-factorize.md*/// constexpr ... for constexpr bool prime()template <int m> struct StaticModint {using mint = StaticModint;unsigned int _v;static constexpr int mod() { return m; }static constexpr unsigned int umod() { return m; }constexpr StaticModint() : _v(0) {}template <class T> constexpr StaticModint(T v) {long long x = (long long)(v % (long long)(umod()));if (x < 0) x += umod();_v = (unsigned int)(x);}constexpr unsigned int val() const { return _v; }constexpr mint &operator++() {_v++;if (_v == umod()) _v = 0;return *this;}constexpr mint &operator--() {if (_v == 0) _v = umod();_v--;return *this;}constexpr mint operator++(int) {mint result = *this;++*this;return result;}constexpr mint operator--(int) {mint result = *this;--*this;return result;}constexpr mint &operator+=(const mint &rhs) {_v += rhs._v;if (_v >= umod()) _v -= umod();return *this;}constexpr mint &operator-=(const mint &rhs) {_v -= rhs._v;if (_v >= umod()) _v += umod();return *this;}constexpr mint &operator*=(const mint &rhs) {unsigned long long z = _v;z *= rhs._v;_v = (unsigned int)(z % umod());return *this;}constexpr mint &operator/=(const mint &rhs) { return (*this *= rhs.inv()); }constexpr mint operator+() const { return *this; }constexpr mint operator-() const { return mint() - *this; }constexpr mint pow(long long n) const {assert(n >= 0);mint x = *this, r = 1;while (n) {if (n & 1) r *= x;x *= x;n >>= 1;}return r;}constexpr mint inv() const {if (prime) {assert(_v);return pow(umod() - 2);} else {auto eg = inv_gcd(_v, m);assert(eg.first == 1);return eg.second;}}friend constexpr mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; }friend constexpr mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; }friend constexpr mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; }friend constexpr mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; }friend constexpr bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; }friend constexpr bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; }friend std::ostream &operator<<(std::ostream &os, const mint &v) { return os << v.val(); }static constexpr bool prime = []() -> bool {if (m == 1) return false;if (m == 2 || m == 7 || m == 61) return true;if (m % 2 == 0) return false;unsigned int d = m - 1;while (d % 2 == 0) d /= 2;for (unsigned int a : {2, 7, 61}) {unsigned int t = d;mint y = mint(a).pow(t);while (t != m - 1 and y != 1 and y != m - 1) {y *= y;t <<= 1;}if (y != m - 1 and t % 2 == 0) {return false;}}return true;}();static constexpr std::pair<int, int> inv_gcd(int a, int b) {if (a == 0) return {b, 0};int s = b, t = a, m0 = 0, m1 = 1;while (t) {const int u = s / t;s -= t * u;m0 -= m1 * u;std::swap(s, t);std::swap(m0, m1);}if (m0 < 0) m0 += b / s;return {s, m0};}};using mint107 = StaticModint<1000000007>;using mint998 = StaticModint<998244353>;using mint = mint998;void solve() {I64(N);auto pf = factor_count(N);const int M = 60;const int L = LEN(pf);vector calc(L, vector<i64>(M + 1));int ind = 0;FORE(p, c, pf) {// {総和, 末尾}vector dp(M + 1, vector<i64>(M + 1));REP(i, c + 1) dp[i][i] = 1;REP(i, M) {REP(b, M + 1) { calc[ind][i + 1] += dp[c][b]; }vector np(M + 1, vector<i64>(M + 1));REP(s, M + 1) REP(b, M + 1) {if (dp[s][b] == 0) continue;REP(nx, b + 1) {if (nx + s <= c) np[s + nx][nx] += dp[s][b];}}swap(dp, np);}ind++;}i64 ans = 0;REP(len, 1, M + 1) {mint c = 1;REP(i, L) c *= calc[i][len];mint er = 1;REP(i, L) er *= calc[i][len - 1];mint cur = c - er;ans += cur.val();}print(ans);return;}int main() {solve();return 0;}