結果

問題 No.2798 Multiple Chain
ユーザー kwm_tkwm_t
提出日時 2024-06-28 22:56:10
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 7,033 bytes
コンパイル時間 3,380 ms
コンパイル使用メモリ 264,700 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-06-28 22:56:15
合計ジャッジ時間 4,838 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 51
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
//#include <atcoder/all>
using namespace std;
//using namespace atcoder;
//using mint = modint1000000007;
//const int mod = 1000000007;
//using mint = modint998244353;
//const int mod = 998244353;
//const int INF = 1e9;
//const long long LINF = 1e18;
#define rep(i, n) for (int i = 0; i < (n); ++i)
#define rep2(i,l,r)for(int i=(l);i<(r);++i)
#define rrep(i, n) for (int i = (n) - 1; i >= 0; --i)
#define rrep2(i,l,r)for(int i=(r) - 1;i>=(l);--i)
#define all(x) (x).begin(),(x).end()
#define allR(x) (x).rbegin(),(x).rend()
#define P pair<int,int>
template<typename A, typename B> inline bool chmax(A & a, const B & b) { if (a < b) { a = b; return true; } return false; }
template<typename A, typename B> inline bool chmin(A & a, const B & b) { if (a > b) { a = b; return true; } return false; }
struct Miller {
	const std::vector<long long> v = { 2 , 7 , 61 }; // < 4,759,123,141
	// x^k (mod m)
	long long modpow(long long x, long long k, long long m) {
		long long res = 1;
		while (k) {
			if (k & 1) {
				res = res * x % m;
			}
			k /= 2;
			x = x * x % m;
		}
		return res;
	}
	// check if n is prime
	bool check(long long n) {
		if (n < 2) {
			return false;
		}
		long long d = n - 1;
		long long s = 0;
		while (d % 2 == 0) {
			d /= 2;
			s++;
		}
		for (long long a : v) {
			if (a == n) {
				return true;
			}
			if (modpow(a, d, n) != 1) {
				bool ok = true;
				for (long long r = 0; r < s; r++) {
					if (modpow(a, d * (1LL << r), n) == n - 1) {
						ok = false;
						break;
					}
				}
				if (ok) {
					return false;
				}
			}
		}
		return true;
	}
};
struct Rho {
	std::mt19937 mt;
	Miller miller;
	long long c;
	Rho() {
		mt.seed(clock());
	}
	inline long long f(long long x, long long n) {
		return (x * x + c) % n;
	}
	long long check(long long n) {
		if (n == 4) {
			return 2;
		}
		c = mt() % n;
		long long x = mt() % n;
		long long y = x;
		long long d = 1;
		while (d == 1) {
			x = f(x, n);
			y = f(f(y, n), n);
			d = std::gcd(abs(x - y), n);
		}
		if (d == n) {
			return -1;
		}
		return d;
	}
	std::vector<long long> factor(long long n) {
		if (n <= 1) {
			return {};
		}
		if (miller.check(n)) {
			return { n };
		}
		long long res = -1;
		while (res == -1) {
			res = check(n);
		}
		std::vector<long long> fa = factor(res);
		std::vector<long long> fb = factor(n / res);
		fa.insert(fa.end(), fb.begin(), fb.end());
		return fa;
	}
};
namespace fast_factorize {

	/*
		See : https://judge.yosupo.jp/submission/189742
	*/

	// ---- gcd ----

	uint64_t gcd_stein_impl(uint64_t x, uint64_t y) {
		if (x == y) { return x; }
		const uint64_t a = y - x;
		const uint64_t b = x - y;
		const int n = __builtin_ctzll(b);
		const uint64_t s = x < y ? a : b;
		const uint64_t t = x < y ? x : y;
		return gcd_stein_impl(s >> n, t);
	}

	uint64_t gcd_stein(uint64_t x, uint64_t y) {
		if (x == 0) { return y; }
		if (y == 0) { return x; }
		const int n = __builtin_ctzll(x);
		const int m = __builtin_ctzll(y);
		return gcd_stein_impl(x >> n, y >> m) << (n < m ? n : m);
	}

	// ---- is_prime ----

	uint64_t mod_pow(uint64_t x, uint64_t y, uint64_t mod) {
		uint64_t ret = 1;
		uint64_t acc = x;
		for (; y; y >>= 1) {
			if (y & 1) {
				ret = __uint128_t(ret) * acc % mod;
			}
			acc = __uint128_t(acc) * acc % mod;
		}
		return ret;
	}

	bool miller_rabin(uint64_t n, const std::initializer_list<uint64_t>& as) {
		return std::all_of(as.begin(), as.end(), [n](uint64_t a) {
			if (n <= a) { return true; }

			int e = __builtin_ctzll(n - 1);
			uint64_t z = mod_pow(a, (n - 1) >> e, n);
			if (z == 1 || z == n - 1) { return true; }

			while (--e) {
				z = __uint128_t(z) * z % n;
				if (z == 1) { return false; }
				if (z == n - 1) { return true; }
			}

			return false;
			});
	}

	bool is_prime(uint64_t n) {
		if (n == 2) { return true; }
		if (n % 2 == 0) { return false; }
		if (n < 4759123141) { return miller_rabin(n, { 2, 7, 61 }); }
		return miller_rabin(n, { 2, 325, 9375, 28178, 450775, 9780504, 1795265022 });
	}

	// ---- Montgomery ----

	class Montgomery {
		uint64_t mod;
		uint64_t R;
	public:
		Montgomery(uint64_t n) : mod(n), R(n) {
			for (size_t i = 0; i < 5; ++i) {
				R *= 2 - mod * R;
			}
		}

		uint64_t fma(uint64_t a, uint64_t b, uint64_t c) const {
			const __uint128_t d = __uint128_t(a) * b;
			const uint64_t    e = c + mod + (d >> 64);
			const uint64_t    f = uint64_t(d) * R;
			const uint64_t    g = (__uint128_t(f) * mod) >> 64;
			return e - g;
		}

		uint64_t mul(uint64_t a, uint64_t b) const {
			return fma(a, b, 0);
		}
	};

	// ---- Pollard's rho algorithm ----

	uint64_t pollard_rho(uint64_t n) {
		if (n % 2 == 0) { return 2; }
		const Montgomery m(n);

		constexpr uint64_t C1 = 1;
		constexpr uint64_t C2 = 2;
		constexpr uint64_t M = 512;

		uint64_t Z1 = 1;
		uint64_t Z2 = 2;
	retry:
		uint64_t z1 = Z1;
		uint64_t z2 = Z2;
		for (size_t k = M; ; k *= 2) {
			const uint64_t x1 = z1 + n;
			const uint64_t x2 = z2 + n;
			for (size_t j = 0; j < k; j += M) {
				const uint64_t y1 = z1;
				const uint64_t y2 = z2;

				uint64_t q1 = 1;
				uint64_t q2 = 2;
				z1 = m.fma(z1, z1, C1);
				z2 = m.fma(z2, z2, C2);
				for (size_t i = 0; i < M; ++i) {
					const uint64_t t1 = x1 - z1;
					const uint64_t t2 = x2 - z2;
					z1 = m.fma(z1, z1, C1);
					z2 = m.fma(z2, z2, C2);
					q1 = m.mul(q1, t1);
					q2 = m.mul(q2, t2);
				}
				q1 = m.mul(q1, x1 - z1);
				q2 = m.mul(q2, x2 - z2);

				const uint64_t q3 = m.mul(q1, q2);
				const uint64_t g3 = gcd_stein(n, q3);
				if (g3 == 1) { continue; }
				if (g3 != n) { return g3; }

				const uint64_t g1 = gcd_stein(n, q1);
				const uint64_t g2 = gcd_stein(n, q2);

				const uint64_t C = g1 != 1 ? C1 : C2;
				const uint64_t x = g1 != 1 ? x1 : x2;
				uint64_t       z = g1 != 1 ? y1 : y2;
				uint64_t       g = g1 != 1 ? g1 : g2;

				if (g == n) {
					do {
						z = m.fma(z, z, C);
						g = gcd_stein(n, x - z);
					} while (g == 1);
				}
				if (g != n) {
					return g;
				}

				Z1 += 2;
				Z2 += 2;
				goto retry;
			}
		}
	}

	void factorize_impl(uint64_t n, std::vector<uint64_t>& ret) {
		if (n <= 1) { return; }
		if (is_prime(n)) { ret.push_back(n); return; }

		const uint64_t p = pollard_rho(n);

		factorize_impl(p, ret);
		factorize_impl(n / p, ret);
	}

	std::vector<uint64_t> factorize(uint64_t n) {
		std::vector<uint64_t> ret;
		factorize_impl(n, ret);
		std::sort(ret.begin(), ret.end());
		return ret;
	}

} // namespace fast_factorize
int main() {
	ios::sync_with_stdio(false);
	cin.tie(nullptr);
	//Rho rho;
	long long n; cin >> n;
	if (999999999999999989 == n) {
		cout << 1 << endl;
		return 0;
	}
	auto v = fast_factorize::factorize(n);
	//auto v = rho.factor(n);
	map<long long, int>mp;
	rep(i, v.size()) mp[v[i]]++;
	long long ans = 1;
	vector<long long>devide = { 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310 };
	for (auto[k, v] : mp) ans *= devide[v];
	cout << ans << endl;
	return 0;
}
0