結果
問題 | No.2798 Multiple Chain |
ユーザー | mkawa2 |
提出日時 | 2024-06-28 23:16:21 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 55 ms / 2,000 ms |
コード長 | 3,128 bytes |
コンパイル時間 | 126 ms |
コンパイル使用メモリ | 82,496 KB |
実行使用メモリ | 66,304 KB |
最終ジャッジ日時 | 2024-06-28 23:16:34 |
合計ジャッジ時間 | 3,704 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 51 |
ソースコード
import sys # sys.setrecursionlimit(200005) # sys.set_int_max_str_digits(200005) int1 = lambda x: int(x)-1 pDB = lambda *x: print(*x, end="\n", file=sys.stderr) p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr) def II(): return int(sys.stdin.readline()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def LI1(): return list(map(int1, sys.stdin.readline().split())) def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def SI(): return sys.stdin.readline().rstrip() dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] # dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] # inf = -1-(-1 << 31) inf = -1-(-1 << 62) # md = 10**9+7 md = 998244353 n=70 dp=[[0]*n for _ in range(n)] dp[1][1]=1 for i in range(n): for j in range(n): pre=dp[i][j] if pre==0:continue if i+1<n and j+1<n: dp[i+1][j+1]+=pre if j+i<n: dp[i][j+i]+=pre cs=[[0]*(n+5) for _ in range(n+5)] for j in range(n): for i in range(n): cs[i][j]=cs[i-1][j]+dp[i][j] def gcd(a, b): while a: a, b = b%a, a return b def is_prime(n): if n == 2: return 1 if n == 1 or n%2 == 0: return 0 m = n - 1 lsb = m & -m s = lsb.bit_length()-1 d = m // lsb test_numbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37] for a in test_numbers: if a == n: continue x = pow(a,d,n) r = 0 if x == 1: continue while x != m: x = pow(x,2,n) r += 1 if x == 1 or r == s: return 0 return 1 def find_prime_factor(n): if n%2 == 0: return 2 m = int(n**0.125)+1 for c in range(1,n): f = lambda a: (pow(a,2,n)+c)%n y = 0 g = q = r = 1 k = 0 while g == 1: x = y while k < 3*r//4: y = f(y) k += 1 while k < r and g == 1: ys = y for _ in range(min(m, r-k)): y = f(y) q = q*abs(x-y)%n g = gcd(q,n) k += m k = r r *= 2 if g == n: g = 1 y = ys while g == 1: y = f(y) g = gcd(abs(x-y),n) if g == n: continue if is_prime(g): return g elif is_prime(n//g): return n//g else: return find_prime_factor(g) def factorize(n): res = {} while not is_prime(n) and n > 1: # nが合成数である間nの素因数の探索を繰り返す p = find_prime_factor(n) s = 0 while n%p == 0: # nが素因数pで割れる間割り続け、出力に追加 n //= p s += 1 res[p] = s if n > 1: # n>1であればnは素数なので出力に追加 res[n] = 1 return res n=II() pe=factorize(n) ans=1 for e in pe.values(): ans*=cs[61][e] print(ans)