結果
| 問題 |
No.2798 Multiple Chain
|
| コンテスト | |
| ユーザー |
mkawa2
|
| 提出日時 | 2024-06-28 23:16:21 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 55 ms / 2,000 ms |
| コード長 | 3,128 bytes |
| コンパイル時間 | 126 ms |
| コンパイル使用メモリ | 82,496 KB |
| 実行使用メモリ | 66,304 KB |
| 最終ジャッジ日時 | 2024-06-28 23:16:34 |
| 合計ジャッジ時間 | 3,704 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 51 |
ソースコード
import sys
# sys.setrecursionlimit(200005)
# sys.set_int_max_str_digits(200005)
int1 = lambda x: int(x)-1
pDB = lambda *x: print(*x, end="\n", file=sys.stderr)
p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr)
def II(): return int(sys.stdin.readline())
def LI(): return list(map(int, sys.stdin.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def LI1(): return list(map(int1, sys.stdin.readline().split()))
def LLI1(rows_number): return [LI1() for _ in range(rows_number)]
def SI(): return sys.stdin.readline().rstrip()
dij = [(0, 1), (-1, 0), (0, -1), (1, 0)]
# dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
# inf = -1-(-1 << 31)
inf = -1-(-1 << 62)
# md = 10**9+7
md = 998244353
n=70
dp=[[0]*n for _ in range(n)]
dp[1][1]=1
for i in range(n):
for j in range(n):
pre=dp[i][j]
if pre==0:continue
if i+1<n and j+1<n:
dp[i+1][j+1]+=pre
if j+i<n:
dp[i][j+i]+=pre
cs=[[0]*(n+5) for _ in range(n+5)]
for j in range(n):
for i in range(n):
cs[i][j]=cs[i-1][j]+dp[i][j]
def gcd(a, b):
while a:
a, b = b%a, a
return b
def is_prime(n):
if n == 2:
return 1
if n == 1 or n%2 == 0:
return 0
m = n - 1
lsb = m & -m
s = lsb.bit_length()-1
d = m // lsb
test_numbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
for a in test_numbers:
if a == n:
continue
x = pow(a,d,n)
r = 0
if x == 1:
continue
while x != m:
x = pow(x,2,n)
r += 1
if x == 1 or r == s:
return 0
return 1
def find_prime_factor(n):
if n%2 == 0:
return 2
m = int(n**0.125)+1
for c in range(1,n):
f = lambda a: (pow(a,2,n)+c)%n
y = 0
g = q = r = 1
k = 0
while g == 1:
x = y
while k < 3*r//4:
y = f(y)
k += 1
while k < r and g == 1:
ys = y
for _ in range(min(m, r-k)):
y = f(y)
q = q*abs(x-y)%n
g = gcd(q,n)
k += m
k = r
r *= 2
if g == n:
g = 1
y = ys
while g == 1:
y = f(y)
g = gcd(abs(x-y),n)
if g == n:
continue
if is_prime(g):
return g
elif is_prime(n//g):
return n//g
else:
return find_prime_factor(g)
def factorize(n):
res = {}
while not is_prime(n) and n > 1: # nが合成数である間nの素因数の探索を繰り返す
p = find_prime_factor(n)
s = 0
while n%p == 0: # nが素因数pで割れる間割り続け、出力に追加
n //= p
s += 1
res[p] = s
if n > 1: # n>1であればnは素数なので出力に追加
res[n] = 1
return res
n=II()
pe=factorize(n)
ans=1
for e in pe.values():
ans*=cs[61][e]
print(ans)
mkawa2