結果
問題 | No.2801 Unique Maximum |
ユーザー | ecottea |
提出日時 | 2024-06-28 23:48:59 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 25,815 bytes |
コンパイル時間 | 9,646 ms |
コンパイル使用メモリ | 355,100 KB |
実行使用メモリ | 45,624 KB |
最終ジャッジ日時 | 2024-06-28 23:49:17 |
合計ジャッジ時間 | 14,606 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 139 ms
5,376 KB |
testcase_02 | TLE | - |
testcase_03 | -- | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
ソースコード
// QCFium 法 #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) int DY[4] = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x)) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x)) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); } template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif //using mint = modint1000000007; using mint = modint998244353; //using mint = static_modint<999999017>; //using mint = modint; // mint::set_mod(m); namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; } template <size_t N> inline int lsb(const bitset<N>& b) { return b._Find_first(); } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(v) #define dump_list(v) #define dump_mat(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す #endif mint TLE(int n, int m) { // dp[w][j] : 幅 w で値 [0..j) vvm dp(n + 1, vm(m + 1)); dp[0][0] = 1; repi(w, 0, n) { repi(j, 1, m) { dp[w][j] += dp[w][j - 1]; rep(l, w) dp[w][j] += dp[l][j - 1] * dp[w - 1 - l][j - 1]; } } dumpel(dp); return dp[n][m]; } /* 0: 1 1 1 1 1 1 1 1 1 1 1 1: 0 1 2 3 4 5 6 7 8 9 10 2: 0 0 2 6 12 20 30 42 56 72 90 3: 0 0 1 9 30 70 135 231 364 540 765 4: 0 0 0 10 64 220 560 1190 2240 3864 6240 5: 0 0 0 8 118 630 2170 5810 13188 26628 49260 6: 0 0 0 4 188 1656 7916 27076 74760 177744 378312 7: 0 0 0 1 258 4014 27326 121023 409836 1153740 2836548 8: 0 0 0 0 302 8994 89582 520626 2179556 7303164 20817588 9: 0 0 0 0 298 18654 279622 2161158 11271436 45179508 149837028 10: 0 0 0 0 244 35832 832680 8674188 56788112 273613032 61067911 */ //【形式的冪級数】 /* * MFPS() : O(1) * 零多項式 f = 0 で初期化する. * * MFPS(mint c0) : O(1) * 定数多項式 f = c0 で初期化する. * * MFPS(mint c0, int n) : O(n) * n 次未満の項をもつ定数多項式 f = c0 で初期化する. * * MFPS(vm c) : O(n) * f(z) = c[0] + c[1] z + ... + c[n - 1] z^(n-1) で初期化する. * * set_conv(vm(*CONV)(const vm&, const vm&)) : O(1) * 畳込み用の関数を CONV に設定する. * * c + f, f + c : O(1) f + g : O(n) * f - c : O(1) c - f, f - g, -f : O(n) * c * f, f * c : O(n) f * g : O(n log n) f * g_sp : O(n |g|) * f / c : O(n) f / g : O(n log n) f / g_sp : O(n |g|) * 形式的冪級数としての和,差,積,商の結果を返す. * g_sp はスパース多項式であり,{次数, 係数} の次数昇順の組の vector で表す. * 制約 : 商では g(0) != 0 * * MFPS f.inv(int d) : O(n log n) * 1 / f mod z^d を返す. * 制約 : f(0) != 0 * * MFPS f.quotient(MFPS g) : O(n log n) * MFPS f.reminder(MFPS g) : O(n log n) * pair<MFPS, MFPS> f.quotient_remainder(MFPS g) : O(n log n) * 多項式としての f を g で割った商,余り,商と余りの組を返す. * 制約 : g の最高次の係数は 0 でない * * int f.deg(), int f.size() : O(1) * 多項式 f の次数[項数]を返す. * * MFPS::monomial(int d, mint c = 1) : O(d) * 単項式 c z^d を返す. * * mint f.assign(mint c) : O(n) * 多項式 f の不定元 z に c を代入した値を返す. * * f.resize(int d) : O(1) * mod z^d をとる. * * f.resize() : O(n) * 不要な高次の項を削る. * * f >> d, f << d : O(n) * 係数列を d だけ右[左]シフトした多項式を返す. * (右シフトは z^d の乗算,左シフトは z^d で割った商と等価) * * f.push_back(c) : O(1) * 最高次の係数として c を追加する. */ struct MFPS { using SMFPS = vector<pim>; int n; // 係数の個数(次数 + 1) vm c; // 係数列 inline static vm(*CONV)(const vm&, const vm&) = convolution; // 畳込み用の関数 // コンストラクタ(0,定数,係数列で初期化) MFPS() : n(0) {} MFPS(mint c0) : n(1), c({ c0 }) {} MFPS(int c0) : n(1), c({ mint(c0) }) {} MFPS(mint c0, int d) : n(d), c(n) { c[0] = c0; } MFPS(int c0, int d) : n(d), c(n) { c[0] = c0; } MFPS(const vm& c_) : n(sz(c_)), c(c_) {} MFPS(const vi& c_) : n(sz(c_)), c(n) { rep(i, n) c[i] = c_[i]; } // 代入 MFPS(const MFPS& f) = default; MFPS& operator=(const MFPS& f) = default; MFPS& operator=(const mint& c0) { n = 1; c = { c0 }; return *this; } void push_back(mint cn) { c.emplace_back(cn); ++n; } void pop_back() { c.pop_back(); --n; } [[nodiscard]] mint back() { return c.back(); } // 比較 [[nodiscard]] bool operator==(const MFPS& g) const { return c == g.c; } [[nodiscard]] bool operator!=(const MFPS& g) const { return c != g.c; } // アクセス inline mint const& operator[](int i) const { return c[i]; } inline mint& operator[](int i) { return c[i]; } // 次数 [[nodiscard]] int deg() const { return n - 1; } [[nodiscard]] int size() const { return n; } static void set_conv(vm(*CONV_)(const vm&, const vm&)) { // verify : https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacci CONV = CONV_; } // 加算 MFPS& operator+=(const MFPS& g) { if (n >= g.n) rep(i, g.n) c[i] += g.c[i]; else { rep(i, n) c[i] += g.c[i]; repi(i, n, g.n - 1) c.push_back(g.c[i]); n = g.n; } return *this; } [[nodiscard]] MFPS operator+(const MFPS& g) const { return MFPS(*this) += g; } // 定数加算 MFPS& operator+=(const mint& sc) { if (n == 0) { n = 1; c = { sc }; } else { c[0] += sc; } return *this; } [[nodiscard]] MFPS operator+(const mint& sc) const { return MFPS(*this) += sc; } [[nodiscard]] friend MFPS operator+(const mint& sc, const MFPS& f) { return f + sc; } MFPS& operator+=(const int& sc) { *this += mint(sc); return *this; } [[nodiscard]] MFPS operator+(const int& sc) const { return MFPS(*this) += sc; } [[nodiscard]] friend MFPS operator+(const int& sc, const MFPS& f) { return f + sc; } // 減算 MFPS& operator-=(const MFPS& g) { if (n >= g.n) rep(i, g.n) c[i] -= g.c[i]; else { rep(i, n) c[i] -= g.c[i]; repi(i, n, g.n - 1) c.push_back(-g.c[i]); n = g.n; } return *this; } [[nodiscard]] MFPS operator-(const MFPS& g) const { return MFPS(*this) -= g; } // 定数減算 MFPS& operator-=(const mint& sc) { *this += -sc; return *this; } [[nodiscard]] MFPS operator-(const mint& sc) const { return MFPS(*this) -= sc; } [[nodiscard]] friend MFPS operator-(const mint& sc, const MFPS& f) { return -(f - sc); } MFPS& operator-=(const int& sc) { *this += -sc; return *this; } [[nodiscard]] MFPS operator-(const int& sc) const { return MFPS(*this) -= sc; } [[nodiscard]] friend MFPS operator-(const int& sc, const MFPS& f) { return -(f - sc); } // 加法逆元 [[nodiscard]] MFPS operator-() const { return MFPS(*this) *= -1; } // 定数倍 MFPS& operator*=(const mint& sc) { rep(i, n) c[i] *= sc; return *this; } [[nodiscard]] MFPS operator*(const mint& sc) const { return MFPS(*this) *= sc; } [[nodiscard]] friend MFPS operator*(const mint& sc, const MFPS& f) { return f * sc; } MFPS& operator*=(const int& sc) { *this *= mint(sc); return *this; } [[nodiscard]] MFPS operator*(const int& sc) const { return MFPS(*this) *= sc; } [[nodiscard]] friend MFPS operator*(const int& sc, const MFPS& f) { return f * sc; } // 右からの定数除算 MFPS& operator/=(const mint& sc) { *this *= sc.inv(); return *this; } [[nodiscard]] MFPS operator/(const mint& sc) const { return MFPS(*this) /= sc; } MFPS& operator/=(const int& sc) { *this /= mint(sc); return *this; } [[nodiscard]] MFPS operator/(const int& sc) const { return MFPS(*this) /= sc; } // 積 MFPS& operator*=(const MFPS& g) { c = CONV(c, g.c); n = sz(c); return *this; } [[nodiscard]] MFPS operator*(const MFPS& g) const { return MFPS(*this) *= g; } // 除算 [[nodiscard]] MFPS inv(int d) const { // 参考:https://nyaannyaan.github.io/library/fps/formal-power-series.hpp // verify : https://judge.yosupo.jp/problem/inv_of_formal_power_series //【方法】 // 1 / f mod z^d を求めることは, // f g = 1 (mod z^d) // なる g を求めることである. // この d の部分を 1, 2, 4, ..., 2^i と倍々にして求めていく. // // d = 1 のときについては // g = 1 / f[0] (mod z^1) // である. // // 次に, // g = h (mod z^k) // が求まっているとして // g mod z^(2 k) // を求める.最初の式を変形していくことで // g - h = 0 (mod z^k) // ⇒ (g - h)^2 = 0 (mod z^(2 k)) // ⇔ g^2 - 2 g h + h^2 = 0 (mod z^(2 k)) // ⇒ f g^2 - 2 f g h + f h^2 = 0 (mod z^(2 k)) // ⇔ g - 2 h + f h^2 = 0 (mod z^(2 k)) (f g = 1 (mod z^d) より) // ⇔ g = (2 - f h) h (mod z^(2 k)) // を得る. // // この手順を d ≦ 2^i となる i まで繰り返し,d 次以上の項を削除すればよい. Assert(!c.empty()); Assert(c[0] != 0); MFPS g(c[0].inv()); for (int k = 1; k < d; k <<= 1) { int len = max(min(2 * k, d), 1); MFPS tmp(0, len); rep(i, min(len, n)) tmp[i] = -c[i]; // -f tmp *= g; // -f h tmp.resize(len); tmp[0] += 2; // 2 - f h g *= tmp; // (2 - f h) h g.resize(len); } return g; } MFPS& operator/=(const MFPS& g) { return *this *= g.inv(max(n, g.n)); } [[nodiscard]] MFPS operator/(const MFPS& g) const { return MFPS(*this) /= g; } // 余り付き除算 [[nodiscard]] MFPS quotient(const MFPS& g) const { // 参考 : https://nyaannyaan.github.io/library/fps/formal-power-series.hpp // verify : https://judge.yosupo.jp/problem/division_of_polynomials //【方法】 // f(x) = g(x) q(x) + r(x) となる q(x) を求める. // f の次数は n-1, g の次数は m-1 とする.(n ≧ m) // 従って q の次数は n-m,r の次数は m-2 となる. // // f^R で f の係数列を逆順にした多項式を表す.すなわち // f^R(x) := f(1/x) x^(n-1) // である.他の多項式も同様とする. // // 最初の式で x → 1/x と置き換えると, // f(1/x) = g(1/x) q(1/x) + r(1/x) // ⇔ f(1/x) x^(n-1) = g(1/x) q(1/x) x^(n-1) + r(1/x) x^(n-1) // ⇔ f(1/x) x^(n-1) = g(1/x) x^(m-1) q(1/x) x^(n-m) + r(1/x) x^(m-2) x^(n-m+1) // ⇔ f^R(x) = g^R(x) q^R(x) + r^R(x) x^(n-m+1) // ⇒ f^R(x) = g^R(x) q^R(x) (mod x^(n-m+1)) // ⇒ q^R(x) = f^R(x) / g^R(x) (mod x^(n-m+1)) // を得る. // // これで q を mod x^(n-m+1) で正しく求めることができることになるが, // q の次数は n-m であったから,q 自身を正しく求めることができた. if (n < g.n) return MFPS(); return ((this->rev() / g.rev()).resize(n - g.n + 1)).rev(); } [[nodiscard]] MFPS reminder(const MFPS& g) const { // verify : https://judge.yosupo.jp/problem/division_of_polynomials return (*this - this->quotient(g) * g).resize(); } [[nodiscard]] pair<MFPS, MFPS> quotient_remainder(const MFPS& g) const { // verify : https://judge.yosupo.jp/problem/division_of_polynomials pair<MFPS, MFPS> res; res.first = this->quotient(g); res.second = (*this - res.first * g).resize(); return res; } // スパース積 MFPS& operator*=(const SMFPS& g) { // g の定数項だけ例外処理 auto it0 = g.begin(); mint g0 = 0; if (it0->first == 0) { g0 = it0->second; it0++; } // 後ろからインライン配る DP repir(i, n - 1, 0) { // 上位項に係数倍して配っていく. for (auto it = it0; it != g.end(); it++) { auto [j, gj] = *it; if (i + j >= n) break; c[i + j] += c[i] * gj; } // 定数項は最後に配るか消去しないといけない. c[i] *= g0; } return *this; } [[nodiscard]] MFPS operator*(const SMFPS& g) const { return MFPS(*this) *= g; } // スパース商 MFPS& operator/=(const SMFPS& g) { // g の定数項だけ例外処理 auto it0 = g.begin(); Assert(it0->first == 0 && it0->second != 0); mint g0_inv = it0->second.inv(); it0++; // 前からインライン配る DP(後ろに累積効果あり) rep(i, n) { // 定数項は最初に配らないといけない. c[i] *= g0_inv; // 上位項に係数倍して配っていく. for (auto it = it0; it != g.end(); it++) { auto [j, gj] = *it; if (i + j >= n) break; c[i + j] -= c[i] * gj; } } return *this; } [[nodiscard]] MFPS operator/(const SMFPS& g) const { return MFPS(*this) /= g; } // 係数反転 [[nodiscard]] MFPS rev() const { MFPS h = *this; reverse(all(h.c)); return h; } // 単項式 [[nodiscard]] static MFPS monomial(int d, mint coef = 1) { MFPS mono(0, d + 1); mono[d] = coef; return mono; } // 不要な高次項の除去 MFPS& resize() { // 最高次の係数が非 0 になるまで削る. while (n > 0 && c[n - 1] == 0) { c.pop_back(); n--; } return *this; } // x^d 以上の項を除去する. MFPS& resize(int d) { n = d; c.resize(d); return *this; } // 不定元への代入 [[nodiscard]] mint assign(const mint& x) const { mint val = 0; repir(i, n - 1, 0) val = val * x + c[i]; return val; } // 係数のシフト MFPS& operator>>=(int d) { n += d; c.insert(c.begin(), d, 0); return *this; } MFPS& operator<<=(int d) { n -= d; if (n <= 0) { c.clear(); n = 0; } else c.erase(c.begin(), c.begin() + d); return *this; } [[nodiscard]] MFPS operator>>(int d) const { return MFPS(*this) >>= d; } [[nodiscard]] MFPS operator<<(int d) const { return MFPS(*this) <<= d; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const MFPS& f) { if (f.n == 0) os << 0; else { rep(i, f.n) { os << f[i] << "z^" << i; if (i < f.n - 1) os << " + "; } } return os; } #endif }; //【線形漸化式の発見】O(n^2) /* * 与えられた数列 a[0..n) に対し,以下の等式を満たす c[0..m) で m を最小とするものを返す: * a[i] = Σj∈[0..m) c[j] a[i-1-j] (∀i∈[m..n)) */ vm berlekamp_massey(const vm& a) { // 参考 : https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm // verify : https://judge.yosupo.jp/problem/find_linear_recurrence vm S(a), C{ 1 }, B{ 1 }; int N = sz(a), m = 1; mint b = 1; rep(n, N) { mint d = 0; rep(i, sz(C)) d += C[i] * S[n - i]; if (d == 0) { m++; } else if (2 * (sz(C) - 1) <= n) { vm T(C); mint coef = d * b.inv(); C.resize(max(sz(C), sz(B) + m)); rep(j, sz(B)) C[j + m] -= coef * B[j]; B = T; b = d; m = 1; } else { mint coef = d * b.inv(); C.resize(max(sz(C), sz(B) + m)); rep(j, sz(B)) C[j + m] -= coef * B[j]; m++; } } C.erase(C.begin()); rep(i, sz(C)) C[i] *= -1; return C; } void zikken() { int n = 100, m = 100; vvm dp(n + 1, vm(m + 1)); dp[0][0] = 1; repi(w, 0, n) { repi(j, 1, m) { dp[w][j] += dp[w][j - 1]; rep(l, w) dp[w][j] += dp[l][j - 1] * dp[w - 1 - l][j - 1]; } } repi(i, 1, n) { auto c = berlekamp_massey(dp[i]); dump("i:", i, "c:", sz(c)); // i + 1 } exit(0); } //【転置】O(h w) /* * a[0..h)[0..w) を転置したものを返す. */ template <class T> vector<vector<T>> transpose(const vector<vector<T>>& a) { // verify : https://yukicoder.me/problems/no/1974 int h = sz(a), w = sz(a[0]); vector<vector<T>> b(w, vector<T>(h)); rep(i, h) rep(j, w) b[j][i] = a[i][j]; return b; } void zikken2() { int n = 100, m = 100; vvm dp(n + 1, vm(m + 1)); dp[0][0] = 1; repi(w, 0, n) { repi(j, 1, m) { dp[w][j] += dp[w][j - 1]; rep(l, w) dp[w][j] += dp[l][j - 1] * dp[w - 1 - l][j - 1]; } } dp = transpose(dp); repi(i, 1, m) { auto c = berlekamp_massey(dp[i]); dump("j:", i, "c:", sz(c)); // 2^j } exit(0); } // https://oeis.org/A122888 // 合成 z → z+z^2 を m 回やって [z^n] らしい //【二次元畳込み(mod 998244353)】O((ha + hb) (wa + wb) (log(ha + hb) + log(wa + wb))) /* * a[0..ha)[0..wa) と b[0..hb)[0..wb) の二次元畳込みを返す. */ vvm convolution_2D(vvm a, vvm b) { // verify : https://atcoder.jp/contests/abc345/tasks/abc345_g int ha = sz(a), wa = sz(a[0]); int hb = sz(b), wb = sz(b[0]); // 縦方向,横方向ともに素朴に畳み込む. if ((ll)ha * wa * hb * wb <= 100000LL) { vvm c(ha + hb - 1, vm(wa + wb - 1)); rep(ia, ha) rep(ib, hb) rep(ja, wa) rep(jb, wb) { c[ia + ib][ja + jb] += a[ia][ja] * b[ib][jb]; } return c; } // 列方向には素朴に畳込み,行方向には NTT で畳み込む. if ((ll)ha * hb <= 800LL) { // 幅を 2 冪に拡張しておく. int W = 1 << (msb(wa + wb - 2) + 1); rep(i, ha) a[i].resize(W); rep(i, hb) b[i].resize(W); // 行方向の NTT rep(i, ha) internal::butterfly(a[i]); rep(i, hb) internal::butterfly(b[i]); vvm c(ha + hb - 1, vm(wa + wb - 1)); vm tmp(W); rep(ia, ha) rep(ib, hb) { // 各点積 rep(j, W) tmp[j] = a[ia][j] * b[ib][j]; // 行方向の INTT internal::butterfly_inv(tmp); rep(j, wa + wb - 1) c[ia + ib][j] += tmp[j]; } // 定数倍の調整 mint inv = mint(W).inv(); rep(i, ha + hb - 1) rep(j, wa + wb - 1) c[i][j] *= inv; return c; } // 行方向には素朴に畳込み,列方向には NTT で畳み込む. if ((ll)wa * wb <= 800LL) { // 高さを 2 冪に拡張しつつ転置する. int H = 1 << (msb(ha + hb - 2) + 1); vvm aT(wa, vm(H)), bT(wb, vm(H)); rep(i, ha) rep(j, wa) aT[j][i] = a[i][j]; rep(i, hb) rep(j, wb) bT[j][i] = b[i][j]; // 列方向の NTT rep(j, wa) internal::butterfly(aT[j]); rep(j, wb) internal::butterfly(bT[j]); vvm c(ha + hb - 1, vm(wa + wb - 1)); vm tmp(H); rep(ja, wa) rep(jb, wb) { // 各点積 rep(i, H) tmp[i] = aT[ja][i] * bT[jb][i]; // 列方向の INTT internal::butterfly_inv(tmp); rep(i, ha + hb - 1) c[i][ja + jb] += tmp[i]; } // 定数倍の調整 mint inv = mint(H).inv(); rep(i, ha + hb - 1) rep(j, wa + wb - 1) c[i][j] *= inv; return c; } // 両方向とも NTT で畳み込む. // 高さと幅を 2 冪に拡張しておく. int H = 1 << (msb(ha + hb - 2) + 1); int W = 1 << (msb(wa + wb - 2) + 1); a.resize(H); b.resize(H); rep(i, H) { a[i].resize(W); b[i].resize(W); } // 行方向の NTT rep(i, H) { internal::butterfly(a[i]); internal::butterfly(b[i]); } // 転置 vvm aT(W, vm(H)), bT(W, vm(H)); rep(i, H) rep(j, W) { aT[j][i] = a[i][j]; bT[j][i] = b[i][j]; } // 列方向の NTT rep(j, W) { internal::butterfly(aT[j]); internal::butterfly(bT[j]); } // 各点積 rep(j, W) rep(i, H) aT[j][i] *= bT[j][i]; // 列方向の INTT rep(j, W) internal::butterfly_inv(aT[j]); // 転置 rep(i, H) rep(j, W) a[i][j] = aT[j][i]; // 行方向の INTT rep(i, H) internal::butterfly_inv(a[i]); // 不要な部分の削除 a.resize(ha + hb - 1); rep(i, ha + hb - 1) a[i].resize(wa + wb - 1); // 定数倍の調整 mint inv = mint(H * W).inv(); rep(i, ha + hb - 1) rep(j, wa + wb - 1) a[i][j] *= inv; return a; } //【関数の合成】O(N (log N)^2) /* * FPS f(z), g(z) を * f(z) = Σi∈[0..n) f[i] z^i * g(z) = Σj∈[1..m) g[j] z^j * と定め,[z^[0..N)] f(g(z)) を返す. * * 利用:【二次元畳込み(mod 998244353)】 */ vm composition(const vm& f, const vm& g, int N) { // 参考 : https://qiita.com/ryuhe1/items/23d79bb84b270f7359e0 // verify : https://judge.yosupo.jp/problem/composition_of_formal_power_series_large if (N == 0) return vm(); if (N == 1) return vm{ f[0] }; if (sz(g) == 0) { vm res(N); res[0] = f[0]; return res; } // 2^K : N 以上の最小の 2 冪 int K = msb(N - 1) + 1; vvvm q(K); q[0] = vvm(sz(g), vm(2)); q[0][0][0] = 1; repi(i, 1, sz(g) - 1) q[0][i][1] = -g[i]; repi(k, 1, K - 1) { auto q_pos(q[k - 1]); int sz_q = sz(q[k - 1]); for (int i = 1; i < sz_q; i += 2) rep(j, sz(q[k - 1][i])) q[k - 1][i][j] *= -1; auto qk_dbl = convolution_2D(q_pos, q[k - 1]); rep(i, min((sz(qk_dbl) + 1) / 2, (1 << (K - k)))) q[k].emplace_back(move(qk_dbl[2 * i])); if (sz(q[k]) > N) q[k].resize(N); } int sz_q = sz(q[K - 1]); for (int i = 1; i < sz_q; i += 2) rep(j, sz(q[K - 1][i])) q[K - 1][i][j] *= -1; if (sz(q[K - 1]) > N) q[K - 1].resize(N); vvm p(1, vm(N)); rep(i, min(sz(f), N)) p[0][N - 1 - i] = f[i]; auto tmp = convolution_2D(p, q[K - 1]); int sz_p = min(2, sz(tmp)); p.resize(sz_p); rep(i, sz_p) { int j_min = N - (1 << (K - 1)); int j_max = min(N, sz(tmp[i])) - 1; p[i].resize(j_max - j_min + 1); repi(j, j_min, j_max) p[i][j - j_min] = tmp[i][j]; } repir(k, K - 2, 0) { vvm p_dbl(sz(p) * 2 - 1, vm(sz(p[0]))); rep(i, sz(p)) rep(j, sz(p[i])) p_dbl[i * 2][j] = p[i][j]; auto tmp = convolution_2D(p_dbl, q[k]); int sz_p = min({ 1 << (K - k), N, sz(tmp) }); p.resize(sz_p); rep(i, sz_p) { int j_min = 1 << k; int j_max = min(1 << (k + 1), sz(tmp[i])) - 1; p[i].resize(j_max - j_min + 1); repi(j, j_min, j_max) p[i][j - j_min] = tmp[i][j]; } } vm res(N); rep(i, min(N, sz(p))) res[i] = p[i][0]; return res; } // O(n (log n)^2 log m mint TLE2(int n, int m) { vm res{ 0, 1 }, pow2{ 0, 1, 1 }; while (m > 0) { // dump(pow2); if (m & 1) res = composition(res, pow2, n + 2); pow2 = composition(pow2, pow2, n + 2); m /= 2; } // dump(res); return res[n + 1]; } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); // zikken(); int n, m; cin >> n >> m; // dump(TLE(n, m)); dump("-----"); cout << TLE2(n, m) << endl; }