結果

問題 No.2801 Unique Maximum
ユーザー ecotteaecottea
提出日時 2024-06-28 23:48:59
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 25,815 bytes
コンパイル時間 9,646 ms
コンパイル使用メモリ 355,100 KB
実行使用メモリ 45,624 KB
最終ジャッジ日時 2024-06-28 23:49:17
合計ジャッジ時間 14,606 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 139 ms
5,376 KB
testcase_02 TLE -
testcase_03 -- -
testcase_04 -- -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

// QCFium 法
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")


#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = static_modint<999999017>;
//using mint = modint; // mint::set_mod(m);

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
template <size_t N> inline int lsb(const bitset<N>& b) { return b._Find_first(); }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す
#endif


mint TLE(int n, int m) {
	// dp[w][j] : 幅 w で値 [0..j)
	vvm dp(n + 1, vm(m + 1));
	dp[0][0] = 1;

	repi(w, 0, n) {
		repi(j, 1, m) {
			dp[w][j] += dp[w][j - 1];
			rep(l, w) dp[w][j] += dp[l][j - 1] * dp[w - 1 - l][j - 1];
		}
	}
	dumpel(dp);

	return dp[n][m];
}
/*
 0: 1 1 1 1 1 1 1 1 1 1 1
 1: 0 1 2 3 4 5 6 7 8 9 10
 2: 0 0 2 6 12 20 30 42 56 72 90
 3: 0 0 1 9 30 70 135 231 364 540 765
 4: 0 0 0 10 64 220 560 1190 2240 3864 6240
 5: 0 0 0 8 118 630 2170 5810 13188 26628 49260
 6: 0 0 0 4 188 1656 7916 27076 74760 177744 378312
 7: 0 0 0 1 258 4014 27326 121023 409836 1153740 2836548
 8: 0 0 0 0 302 8994 89582 520626 2179556 7303164 20817588
 9: 0 0 0 0 298 18654 279622 2161158 11271436 45179508 149837028
10: 0 0 0 0 244 35832 832680 8674188 56788112 273613032 61067911
*/


//【形式的冪級数】
/*
* MFPS() : O(1)
*	零多項式 f = 0 で初期化する.
*
* MFPS(mint c0) : O(1)
*	定数多項式 f = c0 で初期化する.
*
* MFPS(mint c0, int n) : O(n)
*	n 次未満の項をもつ定数多項式 f = c0 で初期化する.
*
* MFPS(vm c) : O(n)
*	f(z) = c[0] + c[1] z + ... + c[n - 1] z^(n-1) で初期化する.
*
* set_conv(vm(*CONV)(const vm&, const vm&)) : O(1)
*	畳込み用の関数を CONV に設定する.
*
* c + f, f + c : O(1)	f + g : O(n)
* f - c : O(1)			c - f, f - g, -f : O(n)
* c * f, f * c : O(n)	f * g : O(n log n)		f * g_sp : O(n |g|)
* f / c : O(n)			f / g : O(n log n)		f / g_sp : O(n |g|)
*	形式的冪級数としての和,差,積,商の結果を返す.
*	g_sp はスパース多項式であり,{次数, 係数} の次数昇順の組の vector で表す.
*	制約 : 商では g(0) != 0
*
* MFPS f.inv(int d) : O(n log n)
*	1 / f mod z^d を返す.
*	制約 : f(0) != 0
*
* MFPS f.quotient(MFPS g) : O(n log n)
* MFPS f.reminder(MFPS g) : O(n log n)
* pair<MFPS, MFPS> f.quotient_remainder(MFPS g) : O(n log n)
*	多項式としての f を g で割った商,余り,商と余りの組を返す.
*	制約 : g の最高次の係数は 0 でない
*
* int f.deg(), int f.size() : O(1)
*	多項式 f の次数[項数]を返す.
*
* MFPS::monomial(int d, mint c = 1) : O(d)
*	単項式 c z^d を返す.
*
* mint f.assign(mint c) : O(n)
*	多項式 f の不定元 z に c を代入した値を返す.
*
* f.resize(int d) : O(1)
*	mod z^d をとる.
*
* f.resize() : O(n)
*	不要な高次の項を削る.
*
* f >> d, f << d : O(n)
*	係数列を d だけ右[左]シフトした多項式を返す.
*  (右シフトは z^d の乗算,左シフトは z^d で割った商と等価)
*
* f.push_back(c) : O(1)
*	最高次の係数として c を追加する.
*/
struct MFPS {
	using SMFPS = vector<pim>;

	int n; // 係数の個数(次数 + 1)
	vm c; // 係数列
	inline static vm(*CONV)(const vm&, const vm&) = convolution; // 畳込み用の関数

	// コンストラクタ(0,定数,係数列で初期化)
	MFPS() : n(0) {}
	MFPS(mint c0) : n(1), c({ c0 }) {}
	MFPS(int c0) : n(1), c({ mint(c0) }) {}
	MFPS(mint c0, int d) : n(d), c(n) { c[0] = c0; }
	MFPS(int c0, int d) : n(d), c(n) { c[0] = c0; }
	MFPS(const vm& c_) : n(sz(c_)), c(c_) {}
	MFPS(const vi& c_) : n(sz(c_)), c(n) { rep(i, n) c[i] = c_[i]; }

	// 代入
	MFPS(const MFPS& f) = default;
	MFPS& operator=(const MFPS& f) = default;
	MFPS& operator=(const mint& c0) { n = 1; c = { c0 }; return *this; }

	void push_back(mint cn) { c.emplace_back(cn); ++n; }
	void pop_back() { c.pop_back(); --n; }
	[[nodiscard]] mint back() { return c.back(); }

	// 比較
	[[nodiscard]] bool operator==(const MFPS& g) const { return c == g.c; }
	[[nodiscard]] bool operator!=(const MFPS& g) const { return c != g.c; }

	// アクセス
	inline mint const& operator[](int i) const { return c[i]; }
	inline mint& operator[](int i) { return c[i]; }

	// 次数
	[[nodiscard]] int deg() const { return n - 1; }
	[[nodiscard]] int size() const { return n; }

	static void set_conv(vm(*CONV_)(const vm&, const vm&)) {
		// verify : https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacci

		CONV = CONV_;
	}

	// 加算
	MFPS& operator+=(const MFPS& g) {
		if (n >= g.n) rep(i, g.n) c[i] += g.c[i];
		else {
			rep(i, n) c[i] += g.c[i];
			repi(i, n, g.n - 1)	c.push_back(g.c[i]);
			n = g.n;
		}
		return *this;
	}
	[[nodiscard]] MFPS operator+(const MFPS& g) const { return MFPS(*this) += g; }

	// 定数加算
	MFPS& operator+=(const mint& sc) {
		if (n == 0) { n = 1; c = { sc }; }
		else { c[0] += sc; }
		return *this;
	}
	[[nodiscard]] MFPS operator+(const mint& sc) const { return MFPS(*this) += sc; }
	[[nodiscard]] friend MFPS operator+(const mint& sc, const MFPS& f) { return f + sc; }
	MFPS& operator+=(const int& sc) { *this += mint(sc); return *this; }
	[[nodiscard]] MFPS operator+(const int& sc) const { return MFPS(*this) += sc; }
	[[nodiscard]] friend MFPS operator+(const int& sc, const MFPS& f) { return f + sc; }

	// 減算
	MFPS& operator-=(const MFPS& g) {
		if (n >= g.n) rep(i, g.n) c[i] -= g.c[i];
		else {
			rep(i, n) c[i] -= g.c[i];
			repi(i, n, g.n - 1) c.push_back(-g.c[i]);
			n = g.n;
		}
		return *this;
	}
	[[nodiscard]] MFPS operator-(const MFPS& g) const { return MFPS(*this) -= g; }

	// 定数減算
	MFPS& operator-=(const mint& sc) { *this += -sc; return *this; }
	[[nodiscard]] MFPS operator-(const mint& sc) const { return MFPS(*this) -= sc; }
	[[nodiscard]] friend MFPS operator-(const mint& sc, const MFPS& f) { return -(f - sc); }
	MFPS& operator-=(const int& sc) { *this += -sc; return *this; }
	[[nodiscard]] MFPS operator-(const int& sc) const { return MFPS(*this) -= sc; }
	[[nodiscard]] friend MFPS operator-(const int& sc, const MFPS& f) { return -(f - sc); }

	// 加法逆元
	[[nodiscard]] MFPS operator-() const { return MFPS(*this) *= -1; }

	// 定数倍
	MFPS& operator*=(const mint& sc) { rep(i, n) c[i] *= sc; return *this; }
	[[nodiscard]] MFPS operator*(const mint& sc) const { return MFPS(*this) *= sc; }
	[[nodiscard]] friend MFPS operator*(const mint& sc, const MFPS& f) { return f * sc; }
	MFPS& operator*=(const int& sc) { *this *= mint(sc); return *this; }
	[[nodiscard]] MFPS operator*(const int& sc) const { return MFPS(*this) *= sc; }
	[[nodiscard]] friend MFPS operator*(const int& sc, const MFPS& f) { return f * sc; }

	// 右からの定数除算
	MFPS& operator/=(const mint& sc) { *this *= sc.inv(); return *this; }
	[[nodiscard]] MFPS operator/(const mint& sc) const { return MFPS(*this) /= sc; }
	MFPS& operator/=(const int& sc) { *this /= mint(sc); return *this; }
	[[nodiscard]] MFPS operator/(const int& sc) const { return MFPS(*this) /= sc; }

	// 積
	MFPS& operator*=(const MFPS& g) { c = CONV(c, g.c); n = sz(c); return *this; }
	[[nodiscard]] MFPS operator*(const MFPS& g) const { return MFPS(*this) *= g; }

	// 除算
	[[nodiscard]] MFPS inv(int d) const {
		// 参考:https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
		// verify : https://judge.yosupo.jp/problem/inv_of_formal_power_series

		//【方法】
		// 1 / f mod z^d を求めることは,
		//		f g = 1 (mod z^d)
		// なる g を求めることである.
		// この d の部分を 1, 2, 4, ..., 2^i と倍々にして求めていく.
		//
		// d = 1 のときについては
		//		g = 1 / f[0] (mod z^1)
		// である.
		//
		// 次に,
		//		g = h (mod z^k)
		// が求まっているとして
		//		g mod z^(2 k)
		// を求める.最初の式を変形していくことで
		//		g - h = 0 (mod z^k)
		//		⇒ (g - h)^2 = 0 (mod z^(2 k))
		//		⇔ g^2 - 2 g h + h^2 = 0 (mod z^(2 k))
		//		⇒ f g^2 - 2 f g h + f h^2 = 0 (mod z^(2 k))
		//		⇔ g - 2 h + f h^2 = 0 (mod z^(2 k))  (f g = 1 (mod z^d) より)
		//		⇔ g = (2 - f h) h (mod z^(2 k))
		// を得る.
		//
		// この手順を d ≦ 2^i となる i まで繰り返し,d 次以上の項を削除すればよい.

		Assert(!c.empty());
		Assert(c[0] != 0);

		MFPS g(c[0].inv());
		for (int k = 1; k < d; k <<= 1) {
			int len = max(min(2 * k, d), 1);
			MFPS tmp(0, len);
			rep(i, min(len, n)) tmp[i] = -c[i];	// -f
			tmp *= g;							// -f h
			tmp.resize(len);
			tmp[0] += 2;						// 2 - f h
			g *= tmp;							// (2 - f h) h
			g.resize(len);
		}

		return g;
	}
	MFPS& operator/=(const MFPS& g) { return *this *= g.inv(max(n, g.n)); }
	[[nodiscard]] MFPS operator/(const MFPS& g) const { return MFPS(*this) /= g; }

	// 余り付き除算
	[[nodiscard]] MFPS quotient(const MFPS& g) const {
		// 参考 : https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
		// verify : https://judge.yosupo.jp/problem/division_of_polynomials

		//【方法】
		// f(x) = g(x) q(x) + r(x) となる q(x) を求める.
		// f の次数は n-1, g の次数は m-1 とする.(n ≧ m)
		// 従って q の次数は n-m,r の次数は m-2 となる.
		// 
		// f^R で f の係数列を逆順にした多項式を表す.すなわち
		//		f^R(x) := f(1/x) x^(n-1)
		// である.他の多項式も同様とする.
		//
		// 最初の式で x → 1/x と置き換えると,
		//		f(1/x) = g(1/x) q(1/x) + r(1/x)
		//		⇔ f(1/x) x^(n-1) = g(1/x) q(1/x) x^(n-1) + r(1/x) x^(n-1)
		//		⇔ f(1/x) x^(n-1) = g(1/x) x^(m-1) q(1/x) x^(n-m) + r(1/x) x^(m-2) x^(n-m+1)
		//		⇔ f^R(x) = g^R(x) q^R(x) + r^R(x) x^(n-m+1)
		//		⇒ f^R(x) = g^R(x) q^R(x) (mod x^(n-m+1))
		// 	    ⇒ q^R(x) = f^R(x) / g^R(x)  (mod x^(n-m+1))
		// を得る.
		// 	   
		// これで q を mod x^(n-m+1) で正しく求めることができることになるが,
		// q の次数は n-m であったから,q 自身を正しく求めることができた.

		if (n < g.n) return MFPS();
		return ((this->rev() / g.rev()).resize(n - g.n + 1)).rev();
	}
	[[nodiscard]] MFPS reminder(const MFPS& g) const {
		// verify : https://judge.yosupo.jp/problem/division_of_polynomials

		return (*this - this->quotient(g) * g).resize();
	}
	[[nodiscard]] pair<MFPS, MFPS> quotient_remainder(const MFPS& g) const {
		// verify : https://judge.yosupo.jp/problem/division_of_polynomials

		pair<MFPS, MFPS> res;
		res.first = this->quotient(g);
		res.second = (*this - res.first * g).resize();
		return res;
	}

	// スパース積
	MFPS& operator*=(const SMFPS& g) {
		// g の定数項だけ例外処理
		auto it0 = g.begin();
		mint g0 = 0;
		if (it0->first == 0) {
			g0 = it0->second;
			it0++;
		}

		// 後ろからインライン配る DP
		repir(i, n - 1, 0) {
			// 上位項に係数倍して配っていく.
			for (auto it = it0; it != g.end(); it++) {
				auto [j, gj] = *it;

				if (i + j >= n) break;

				c[i + j] += c[i] * gj;
			}

			// 定数項は最後に配るか消去しないといけない.
			c[i] *= g0;
		}

		return *this;
	}
	[[nodiscard]] MFPS operator*(const SMFPS& g) const { return MFPS(*this) *= g; }

	// スパース商
	MFPS& operator/=(const SMFPS& g) {
		// g の定数項だけ例外処理
		auto it0 = g.begin();
		Assert(it0->first == 0 && it0->second != 0);
		mint g0_inv = it0->second.inv();
		it0++;

		// 前からインライン配る DP(後ろに累積効果あり)
		rep(i, n) {

			// 定数項は最初に配らないといけない.
			c[i] *= g0_inv;

			// 上位項に係数倍して配っていく.
			for (auto it = it0; it != g.end(); it++) {
				auto [j, gj] = *it;

				if (i + j >= n) break;

				c[i + j] -= c[i] * gj;
			}
		}

		return *this;
	}
	[[nodiscard]] MFPS operator/(const SMFPS& g) const { return MFPS(*this) /= g; }

	// 係数反転
	[[nodiscard]] MFPS rev() const { MFPS h = *this; reverse(all(h.c)); return h; }

	// 単項式
	[[nodiscard]] static MFPS monomial(int d, mint coef = 1) {
		MFPS mono(0, d + 1);
		mono[d] = coef;
		return mono;
	}

	// 不要な高次項の除去
	MFPS& resize() {
		// 最高次の係数が非 0 になるまで削る.
		while (n > 0 && c[n - 1] == 0) {
			c.pop_back();
			n--;
		}
		return *this;
	}

	// x^d 以上の項を除去する.
	MFPS& resize(int d) {
		n = d;
		c.resize(d);
		return *this;
	}

	// 不定元への代入
	[[nodiscard]] mint assign(const mint& x) const {
		mint val = 0;
		repir(i, n - 1, 0) val = val * x + c[i];
		return val;
	}

	// 係数のシフト
	MFPS& operator>>=(int d) {
		n += d;
		c.insert(c.begin(), d, 0);
		return *this;
	}
	MFPS& operator<<=(int d) {
		n -= d;
		if (n <= 0) { c.clear(); n = 0; }
		else c.erase(c.begin(), c.begin() + d);
		return *this;
	}
	[[nodiscard]] MFPS operator>>(int d) const { return MFPS(*this) >>= d; }
	[[nodiscard]] MFPS operator<<(int d) const { return MFPS(*this) <<= d; }

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const MFPS& f) {
		if (f.n == 0) os << 0;
		else {
			rep(i, f.n) {
				os << f[i] << "z^" << i;
				if (i < f.n - 1) os << " + ";
			}
		}
		return os;
	}
#endif
};


//【線形漸化式の発見】O(n^2)
/*
* 与えられた数列 a[0..n) に対し,以下の等式を満たす c[0..m) で m を最小とするものを返す:
*		a[i] = Σj∈[0..m) c[j] a[i-1-j]  (∀i∈[m..n))
*/
vm berlekamp_massey(const vm& a) {
	// 参考 : https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm
	// verify : https://judge.yosupo.jp/problem/find_linear_recurrence

	vm S(a), C{ 1 }, B{ 1 };
	int N = sz(a), m = 1; mint b = 1;

	rep(n, N) {
		mint d = 0;
		rep(i, sz(C)) d += C[i] * S[n - i];

		if (d == 0) {
			m++;
		}
		else if (2 * (sz(C) - 1) <= n) {
			vm T(C);

			mint coef = d * b.inv();
			C.resize(max(sz(C), sz(B) + m));
			rep(j, sz(B)) C[j + m] -= coef * B[j];

			B = T;
			b = d;
			m = 1;
		}
		else {
			mint coef = d * b.inv();
			C.resize(max(sz(C), sz(B) + m));
			rep(j, sz(B)) C[j + m] -= coef * B[j];

			m++;
		}
	}

	C.erase(C.begin());
	rep(i, sz(C)) C[i] *= -1;

	return C;
}


void zikken() {
	int n = 100, m = 100;

	vvm dp(n + 1, vm(m + 1));
	dp[0][0] = 1;

	repi(w, 0, n) {
		repi(j, 1, m) {
			dp[w][j] += dp[w][j - 1];
			rep(l, w) dp[w][j] += dp[l][j - 1] * dp[w - 1 - l][j - 1];
		}
	}

	repi(i, 1, n) {
		auto c = berlekamp_massey(dp[i]);
		dump("i:", i, "c:", sz(c)); // i + 1
	}

	exit(0);
}


//【転置】O(h w)
/*
* a[0..h)[0..w) を転置したものを返す.
*/
template <class T>
vector<vector<T>> transpose(const vector<vector<T>>& a) {
	// verify : https://yukicoder.me/problems/no/1974

	int h = sz(a), w = sz(a[0]);

	vector<vector<T>> b(w, vector<T>(h));
	rep(i, h) rep(j, w) b[j][i] = a[i][j];

	return b;
}


void zikken2() {
	int n = 100, m = 100;

	vvm dp(n + 1, vm(m + 1));
	dp[0][0] = 1;

	repi(w, 0, n) {
		repi(j, 1, m) {
			dp[w][j] += dp[w][j - 1];
			rep(l, w) dp[w][j] += dp[l][j - 1] * dp[w - 1 - l][j - 1];
		}
	}
	dp = transpose(dp);

	repi(i, 1, m) {
		auto c = berlekamp_massey(dp[i]);
		dump("j:", i, "c:", sz(c)); // 2^j
	}

	exit(0);
}


// https://oeis.org/A122888
// 合成 z → z+z^2 を m 回やって [z^n] らしい


//【二次元畳込み(mod 998244353)】O((ha + hb) (wa + wb) (log(ha + hb) + log(wa + wb)))
/*
* a[0..ha)[0..wa) と b[0..hb)[0..wb) の二次元畳込みを返す.
*/
vvm convolution_2D(vvm a, vvm b) {
	// verify : https://atcoder.jp/contests/abc345/tasks/abc345_g

	int ha = sz(a), wa = sz(a[0]);
	int hb = sz(b), wb = sz(b[0]);

	// 縦方向,横方向ともに素朴に畳み込む.
	if ((ll)ha * wa * hb * wb <= 100000LL) {
		vvm c(ha + hb - 1, vm(wa + wb - 1));
		rep(ia, ha) rep(ib, hb) rep(ja, wa) rep(jb, wb) {
			c[ia + ib][ja + jb] += a[ia][ja] * b[ib][jb];
		}

		return c;
	}

	// 列方向には素朴に畳込み,行方向には NTT で畳み込む.
	if ((ll)ha * hb <= 800LL) {
		// 幅を 2 冪に拡張しておく.
		int W = 1 << (msb(wa + wb - 2) + 1);
		rep(i, ha) a[i].resize(W);
		rep(i, hb) b[i].resize(W);

		// 行方向の NTT
		rep(i, ha) internal::butterfly(a[i]);
		rep(i, hb) internal::butterfly(b[i]);

		vvm c(ha + hb - 1, vm(wa + wb - 1)); vm tmp(W);
		rep(ia, ha) rep(ib, hb) {
			// 各点積
			rep(j, W) tmp[j] = a[ia][j] * b[ib][j];

			// 行方向の INTT
			internal::butterfly_inv(tmp);

			rep(j, wa + wb - 1) c[ia + ib][j] += tmp[j];
		}

		// 定数倍の調整
		mint inv = mint(W).inv();
		rep(i, ha + hb - 1) rep(j, wa + wb - 1) c[i][j] *= inv;

		return c;
	}

	// 行方向には素朴に畳込み,列方向には NTT で畳み込む.
	if ((ll)wa * wb <= 800LL) {
		// 高さを 2 冪に拡張しつつ転置する.
		int H = 1 << (msb(ha + hb - 2) + 1);
		vvm aT(wa, vm(H)), bT(wb, vm(H));
		rep(i, ha) rep(j, wa) aT[j][i] = a[i][j];
		rep(i, hb) rep(j, wb) bT[j][i] = b[i][j];

		// 列方向の NTT
		rep(j, wa) internal::butterfly(aT[j]);
		rep(j, wb) internal::butterfly(bT[j]);

		vvm c(ha + hb - 1, vm(wa + wb - 1)); vm tmp(H);
		rep(ja, wa) rep(jb, wb) {
			// 各点積
			rep(i, H) tmp[i] = aT[ja][i] * bT[jb][i];

			// 列方向の INTT
			internal::butterfly_inv(tmp);

			rep(i, ha + hb - 1) c[i][ja + jb] += tmp[i];
		}

		// 定数倍の調整
		mint inv = mint(H).inv();
		rep(i, ha + hb - 1) rep(j, wa + wb - 1) c[i][j] *= inv;

		return c;
	}

	// 両方向とも NTT で畳み込む.

	// 高さと幅を 2 冪に拡張しておく.
	int H = 1 << (msb(ha + hb - 2) + 1);
	int W = 1 << (msb(wa + wb - 2) + 1);
	a.resize(H); b.resize(H);
	rep(i, H) { a[i].resize(W); b[i].resize(W); }

	// 行方向の NTT
	rep(i, H) { internal::butterfly(a[i]); internal::butterfly(b[i]); }

	// 転置
	vvm aT(W, vm(H)), bT(W, vm(H));
	rep(i, H) rep(j, W) { aT[j][i] = a[i][j]; bT[j][i] = b[i][j]; }

	// 列方向の NTT
	rep(j, W) { internal::butterfly(aT[j]); internal::butterfly(bT[j]); }

	// 各点積
	rep(j, W) rep(i, H) aT[j][i] *= bT[j][i];

	// 列方向の INTT
	rep(j, W) internal::butterfly_inv(aT[j]);

	// 転置
	rep(i, H) rep(j, W) a[i][j] = aT[j][i];

	// 行方向の INTT
	rep(i, H) internal::butterfly_inv(a[i]);

	// 不要な部分の削除
	a.resize(ha + hb - 1);
	rep(i, ha + hb - 1) a[i].resize(wa + wb - 1);

	// 定数倍の調整
	mint inv = mint(H * W).inv();
	rep(i, ha + hb - 1) rep(j, wa + wb - 1) a[i][j] *= inv;

	return a;
}


//【関数の合成】O(N (log N)^2)
/*
* FPS f(z), g(z) を
*	f(z) = Σi∈[0..n) f[i] z^i
*	g(z) = Σj∈[1..m) g[j] z^j
* と定め,[z^[0..N)] f(g(z)) を返す.
*
* 利用:【二次元畳込み(mod 998244353)】
*/
vm composition(const vm& f, const vm& g, int N) {
	// 参考 : https://qiita.com/ryuhe1/items/23d79bb84b270f7359e0
	// verify : https://judge.yosupo.jp/problem/composition_of_formal_power_series_large

	if (N == 0) return vm();
	if (N == 1) return vm{ f[0] };
	if (sz(g) == 0) {
		vm res(N);
		res[0] = f[0];
		return res;
	}

	// 2^K : N 以上の最小の 2 冪
	int K = msb(N - 1) + 1;

	vvvm q(K);

	q[0] = vvm(sz(g), vm(2));
	q[0][0][0] = 1;
	repi(i, 1, sz(g) - 1) q[0][i][1] = -g[i];

	repi(k, 1, K - 1) {
		auto q_pos(q[k - 1]);
		int sz_q = sz(q[k - 1]);
		for (int i = 1; i < sz_q; i += 2) rep(j, sz(q[k - 1][i])) q[k - 1][i][j] *= -1;
		auto qk_dbl = convolution_2D(q_pos, q[k - 1]);
		rep(i, min((sz(qk_dbl) + 1) / 2, (1 << (K - k)))) q[k].emplace_back(move(qk_dbl[2 * i]));
		if (sz(q[k]) > N) q[k].resize(N);
	}

	int sz_q = sz(q[K - 1]);
	for (int i = 1; i < sz_q; i += 2) rep(j, sz(q[K - 1][i])) q[K - 1][i][j] *= -1;
	if (sz(q[K - 1]) > N) q[K - 1].resize(N);

	vvm p(1, vm(N));
	rep(i, min(sz(f), N)) p[0][N - 1 - i] = f[i];

	auto tmp = convolution_2D(p, q[K - 1]);

	int sz_p = min(2, sz(tmp));
	p.resize(sz_p);
	rep(i, sz_p) {
		int j_min = N - (1 << (K - 1));
		int j_max = min(N, sz(tmp[i])) - 1;
		p[i].resize(j_max - j_min + 1);
		repi(j, j_min, j_max) p[i][j - j_min] = tmp[i][j];
	}

	repir(k, K - 2, 0) {
		vvm p_dbl(sz(p) * 2 - 1, vm(sz(p[0])));
		rep(i, sz(p)) rep(j, sz(p[i])) p_dbl[i * 2][j] = p[i][j];

		auto tmp = convolution_2D(p_dbl, q[k]);

		int sz_p = min({ 1 << (K - k), N, sz(tmp) });
		p.resize(sz_p);
		rep(i, sz_p) {
			int j_min = 1 << k;
			int j_max = min(1 << (k + 1), sz(tmp[i])) - 1;
			p[i].resize(j_max - j_min + 1);
			repi(j, j_min, j_max) p[i][j - j_min] = tmp[i][j];
		}
	}

	vm res(N);
	rep(i, min(N, sz(p))) res[i] = p[i][0];

	return res;
}


// O(n (log n)^2 log m
mint TLE2(int n, int m) {
	vm res{ 0, 1 }, pow2{ 0, 1, 1 };
	
	while (m > 0) {
//		dump(pow2);
		if (m & 1) res = composition(res, pow2, n + 2);
		pow2 = composition(pow2, pow2, n + 2);
		m /= 2;
	}
//	dump(res);

	return res[n + 1];
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

//	zikken();

	int n, m;
	cin >> n >> m;

//	dump(TLE(n, m)); dump("-----");

	cout << TLE2(n, m) << endl;
}
0