結果
問題 | No.2798 Multiple Chain |
ユーザー |
|
提出日時 | 2024-06-29 00:06:49 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 4,804 bytes |
コンパイル時間 | 26,241 ms |
コンパイル使用メモリ | 401,500 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-29 00:07:20 |
合計ジャッジ時間 | 18,003 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 51 |
ソースコード
use std::io::Read;fn get_word() -> String {let stdin = std::io::stdin();let mut stdin=stdin.lock();let mut u8b: [u8; 1] = [0];loop {let mut buf: Vec<u8> = Vec::with_capacity(16);loop {let res = stdin.read(&mut u8b);if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {break;} else {buf.push(u8b[0]);}}if buf.len() >= 1 {let ret = String::from_utf8(buf).unwrap();return ret;}}}fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }// https://judge.yosupo.jp/submission/5155mod pollard_rho {/// binary gcdpub fn gcd(mut x: i64, mut y: i64) -> i64 {if y == 0 { return x; }if x == 0 { return y; }let k = (x | y).trailing_zeros();y >>= k;x >>= x.trailing_zeros();while y != 0 {y >>= y.trailing_zeros();if x > y { let t = x; x = y; y = t; }y -= x;}x << k}fn add_mod(x: i64, y: i64, n: i64) -> i64 {let z = x + y;if z >= n { z - n } else { z }}fn mul_mod(x: i64, mut y: i64, n: i64) -> i64 {assert!(x >= 0);assert!(x < n);let mut sum = 0;let mut cur = x;while y > 0 {if (y & 1) == 1 { sum = add_mod(sum, cur, n); }cur = add_mod(cur, cur, n);y >>= 1;}sum}fn mod_pow(x: i64, mut e: i64, n: i64) -> i64 {let mut prod = if n == 1 { 0 } else { 1 };let mut cur = x % n;while e > 0 {if (e & 1) == 1 { prod = mul_mod(prod, cur, n); }e >>= 1;if e > 0 { cur = mul_mod(cur, cur, n); }}prod}pub fn is_prime(n: i64) -> bool {if n <= 1 { return false; }let small = [2, 3, 5, 7, 11, 13];if small.iter().any(|&u| u == n) { return true; }if small.iter().any(|&u| n % u == 0) { return false; }let mut d = n - 1;let e = d.trailing_zeros();d >>= e;// https://miller-rabin.appspot.com/let a = [2, 325, 9375, 28178, 450775, 9780504, 1795265022];a.iter().all(|&a| {if a % n == 0 { return true; }let mut x = mod_pow(a, d, n);if x == 1 { return true; }for _ in 0..e {if x == n - 1 {return true;}x = mul_mod(x, x, n);if x == 1 { return false; }}x == 1})}fn pollard_rho(n: i64, c: &mut i64) -> i64 {// An improvement with Brent's cycle detection algorithm is performed.// https://maths-people.anu.edu.au/~brent/pub/pub051.htmlif n % 2 == 0 { return 2; }loop {let mut x: i64; // tortoiselet mut y = 2; // harelet mut d = 1;let cc = *c;let f = |i| add_mod(mul_mod(i, i, n), cc, n);let mut r = 1;// We don't perform the gcd-once-in-a-while optimization// because the plain gcd-every-time algorithm appears to// outperform, at least on judge.yosupo.jp :)while d == 1 {x = y;for _ in 0..r {y = f(y);d = gcd((x - y).abs(), n);if d != 1 { break; }}r *= 2;}if d == n {*c += 1;continue;}return d;}}/// Outputs (p, e) in p's ascending order.pub fn factorize(x: i64) -> Vec<(i64, usize)> {if x <= 1 { return vec![]; }let mut hm = std::collections::HashMap::new();let mut pool = vec![x];let mut c = 1;while let Some(u) = pool.pop() {if is_prime(u) {*hm.entry(u).or_insert(0) += 1;continue;}let p = pollard_rho(u, &mut c);pool.push(p);pool.push(u / p);}let mut v: Vec<_> = hm.into_iter().collect();v.sort();v}} // mod pollard_rhofn main() {let n: i64 = get();let pe = pollard_rho::factorize(n);const N: usize = 61;let mut dp = vec![vec![0i64; N]; N];dp[0] = vec![1; N];for i in 1..N {dp[i][1] = 1;for j in 2..i + 1 {dp[i][j] = dp[i][j - 1] + dp[i - j][j];}for j in i + 1..N {dp[i][j] = dp[i][j - 1];}}let mut ans = 1;for (_, e) in pe {ans *= dp[e][e];}println!("{}", ans);}