結果
問題 | No.2795 Perfect Number |
ユーザー | dekatin |
提出日時 | 2024-06-29 12:41:49 |
言語 | C++23(gcc13) (gcc 13.2.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 10 ms / 2,000 ms |
コード長 | 25,151 bytes |
コンパイル時間 | 5,733 ms |
コンパイル使用メモリ | 307,996 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-29 12:41:57 |
合計ジャッジ時間 | 7,054 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 1 ms
5,376 KB |
testcase_08 | AC | 1 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 1 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 1 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 8 ms
5,376 KB |
testcase_15 | AC | 8 ms
5,376 KB |
testcase_16 | AC | 10 ms
5,376 KB |
testcase_17 | AC | 9 ms
5,376 KB |
testcase_18 | AC | 10 ms
5,376 KB |
testcase_19 | AC | 1 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 1 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 1 ms
5,376 KB |
testcase_25 | AC | 1 ms
5,376 KB |
testcase_26 | AC | 1 ms
5,376 KB |
testcase_27 | AC | 2 ms
5,376 KB |
testcase_28 | AC | 2 ms
5,376 KB |
testcase_29 | AC | 2 ms
5,376 KB |
testcase_30 | AC | 1 ms
5,376 KB |
testcase_31 | AC | 1 ms
5,376 KB |
testcase_32 | AC | 2 ms
5,376 KB |
testcase_33 | AC | 2 ms
5,376 KB |
testcase_34 | AC | 2 ms
5,376 KB |
testcase_35 | AC | 2 ms
5,376 KB |
testcase_36 | AC | 2 ms
5,376 KB |
testcase_37 | AC | 1 ms
5,376 KB |
ソースコード
#line 1 "lib/template.hpp" #include <bits/stdc++.h> using namespace std; #define int long long using ll = long long; using u32 = uint32_t; using u64 = uint64_t; using i128 = __int128; using u128 = unsigned __int128; #define str string using db = long double; template <class T> constexpr T infty = 0; template <> constexpr int32_t infty<int32_t> = 1'000'000'000; template <> constexpr ll infty<ll> = ll(infty<int32_t>) * infty<int32_t> * 2; template <> constexpr u32 infty<u32> = infty<int32_t>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<int, int>; using pd = pair<db, db>; #define mp make_pair #define f first #define s second #define tcT template <class T #define tcTU tcT, class U tcT > using V = vector<T>; tcT, size_t SZ > using AR = array<T, SZ>; using vi = V<int>; using vb = V<bool>; using vd = V<db>; using vs = V<string>; using vpi = V<pi>; using vpd = V<pd>; tcT > using pqg = priority_queue<T, vector<T>, greater<T>>; #define sz(x) (int)((x).size()) #define bg(x) begin(x) #define all(x) bg(x), end(x) #define rall(x) x.rbegin(), x.rend() #define sor(x) sort(all(x)) #define rsz resize #define ins insert #define pb push_back #define eb emplace_back #define ft front() #define bk back() tcT > T POP(V<T>& a) { T res = a.bk; a.pop_back(); return res; } #define lb lower_bound #define ub upper_bound tcT > int lwb(V<T>& a, const T& b) { return (int)(lb(all(a), b) - bg(a)); } tcT > int upb(V<T>& a, const T& b) { return (int)(ub(all(a), b) - bg(a)); } #define each(a, x) for (auto& a : x) #define rep1(a) for (ll _ = 0; _ < (ll)(a); ++_) #define rep2(i, n) for (ll i = 0; i < (ll)(n); ++i) #define rep3(i, a, b) for (ll i = (ll)(a); i < (ll)(b); ++i) #define rep4(i, a, b, c) for (ll i = (ll)(a); i < (ll)(b); i += (c)) #define cut4(a, b, c, d, e, ...) e #define rep(...) cut4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define per1(n) for (ll _ = ((ll)n) - 1; _ >= 0; --_) #define per2(i, n) for (ll i = ((ll)n) - 1; i >= 0; --i) #define per3(i, a, b) for (ll i = ((ll)b) - 1; i >= (ll)(a); --i) #define per4(i, a, b, c) for (ll i = ((ll)b) - 1; i >= (ll)(a); i -= (c)) #define per(...) cut4(__VA_ARGS__, per4, per3, per2, per1)(__VA_ARGS__) #define rep_subset(i, s) \ for (ll i = (s); i >= 0; i = (i == 0 ? -1 : (i - 1) & (s))) const int dx[8]{1, 0, -1, 0, 1, 1, -1, -1}, dy[8]{0, 1, 0, -1, 1, -1, 1, -1}; constexpr int pct(int x) { return __builtin_popcount(x); } constexpr int topbit(int x) { return x == 0 ? 0 : 63 - __builtin_clzll(x); } constexpr int lowbit(int x) { return x == 0 ? 0 : __builtin_ctzll(x); } constexpr int isp2(int x) { return x && (x & -x) == x; } constexpr int mask(int x) { return (1ll << x) - 1; } int cdiv(int a, int b) { return a / b + ((a ^ b) > 0 && a % b); } int fdiv(int a, int b) { return a / b - ((a ^ b) < 0 && a % b); } int root2(int x) { int res = sqrtl(x) + 2; while (res * res > x) --res; return res; } tcT > bool ckmin(T& a, const T& b) { return b < a ? a = b, 1 : 0; } tcT > bool ckmax(T& a, const T& b) { return a < b ? a = b, 1 : 0; } tcTU > T fstTrue(T lo, T hi, U f) { ++hi; assert(lo <= hi); while (lo < hi) { T mid = lo + (hi - lo) / 2; f(mid) ? hi = mid : lo = mid + 1; } return lo; } tcTU > T lstTrue(T lo, T hi, U f) { --lo; assert(lo <= hi); while (lo < hi) { T mid = lo + (hi - lo + 1) / 2; f(mid) ? lo = mid : hi = mid - 1; } return lo; } tcT > void Unique(vector<T>& v) { sort(all(v)); v.erase(unique(all(v)), end(v)); } tcT > V<T> prefSum(V<T>& a, int off = 1) { int N = sz(a); V<T> ret(N + 1); rep(i, N) ret[i + 1] = ret[i] + a[i]; if (off == 0) ret.erase(ret.begin()); return ret; } tcT > V<T> sufSum(const V<T>& a) { V<T> ret = a; per(i, sz(ret) - 1) ret[i] += ret[i + 1]; return ret; } // sorted[i] = v[idx[i]] tcT > vi sortedIdx(const V<T>& v) { vi ret(sz(v)); iota(all(ret), 0); sort(all(ret), [&](int i, int j) { return v[i] < v[j]; }); return ret; } tcT > vi rearrange(const V<T>& v, const vi& idx) { vi ret(sz(v)); rep(i, sz(v)) ret[i] = v[idx[i]]; return ret; } // ? = -1 tcT > vi str_to_vi(const str& S, T first_char) { vi A(sz(S)); rep(i, sz(S)) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } tcT > vi Cnt(const V<T>& v, int mx) { vi cnt(mx + 1); each(x, v) cnt[x]++; return cnt; } tcT > T Sum(const V<T>& v) { T ret = 0; each(x, v) ret += x; return ret; } tcT > T Max(const V<T>& v) { return *max_element(all(v)); } tcT > T Min(const V<T>& v) { return *min_element(all(v)); } tcT > int MaxIdx(const V<T>& v) { return max_element(all(v)) - bg(v); } tcT > int MinIdx(const V<T>& v) { return min_element(all(v)) - bg(v); } tcT > V<T> Transpose(const V<T>& v) { using U = typename T::value_type; if (v.empty()) return {}; int H = v.size(), W = v[0].size(); vector res(W, T(H, U{})); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) { res[j][i] = v[i][j]; } } return res; } tcT > V<T> Rotate(const V<T>& v, int clockwise = true) { using U = typename T::value_type; int H = v.size(), W = v[0].size(); vector res(W, T(H, U{})); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) { if (clockwise) { res[j][H - 1 - i] = v[i][j]; } else { res[W - 1 - j][i] = v[i][j]; } } } return res; } inline namespace IO { #define SFINAE(x, ...) \ template <class, class = void> struct x : std::false_type {}; \ template <class T> struct x<T, std::void_t<__VA_ARGS__>> : std::true_type {} SFINAE(DefaultI, decltype(std::cin >> std::declval<T&>())); SFINAE(DefaultO, decltype(std::cout << std::declval<T&>())); SFINAE(IsTuple, typename std::tuple_size<T>::type); SFINAE(Iterable, decltype(std::begin(std::declval<T>()))); template <auto& is> struct Reader { template <class T> void Impl(T& t) { if constexpr (DefaultI<T>::value) is >> t; else if constexpr (Iterable<T>::value) { for (auto& x : t) Impl(x); } else if constexpr (IsTuple<T>::value) { std::apply([this](auto&... args) { (Impl(args), ...); }, t); } else static_assert(IsTuple<T>::value, "No matching type for read"); } template <class... Ts> void read(Ts&... ts) { ((Impl(ts)), ...); } }; template <class... Ts> void re(Ts&... ts) { Reader<cin>{}.read(ts...); } #define def(t, args...) \ t args; \ re(args); #define defi(args...) def(int, args) #define defs(args...) def(str, args) #define defd(args...) def(db, args) #define defv(t, name, size) \ V<t> name(size); \ re(name); #define defvi1(name, size) \ vi name(size); \ re(name); #define defvi2(name, size, offset) \ vi name(size + offset); \ rep(i, offset, size + offset) re(name[i]); #define cut3(a, b, c, d, ...) d #define defvi(...) cut3(__VA_ARGS__, defvi2, defvi1)(__VA_ARGS__) #define re2(s, t) \ for (int i = 0; i < sz(s); i++) { \ re(s[i], t[i]); \ } #define re3(s, t, u) \ for (int i = 0; i < sz(s); i++) { \ re(s[i], t[i], u[i]); \ } #define re4(s, t, u, v) \ for (int i = 0; i < sz(s); i++) { \ re(s[i], t[i], u[i], v[i]); \ } template <auto& os, bool debug, bool print_nd> struct Writer { string comma() const { return debug ? "," : ""; } template <class T> constexpr char Space(const T&) const { return print_nd && (Iterable<T>::value or IsTuple<T>::value) ? '\n' : ' '; } template <class T> void Impl(T const& t) const { if constexpr (DefaultO<T>::value) os << t; else if constexpr (Iterable<T>::value) { if (debug) os << '{'; int i = 0; for (auto&& x : t) ((i++) ? (os << comma() << Space(x), Impl(x)) : Impl(x)); if (debug) os << '}'; } else if constexpr (IsTuple<T>::value) { if (debug) os << '('; std::apply( [this](auto const&... args) { int i = 0; (((i++) ? (os << comma() << " ", Impl(args)) : Impl(args)), ...); }, t); if (debug) os << ')'; } else static_assert(IsTuple<T>::value, "No matching type for print"); } template <class T> void ImplWrapper(T const& t) const { Impl(t); } template <class... Ts> void print(Ts const&... ts) const { ((Impl(ts)), ...); } template <class F, class... Ts> void print_with_sep(const std::string& sep, F const& f, Ts const&... ts) const { ImplWrapper(f), ((os << sep, ImplWrapper(ts)), ...), os << '\n'; } void print_with_sep(const std::string&) const { os << '\n'; } }; template <class... Ts> void pr(Ts const&... ts) { Writer<cout, false, true>{}.print(ts...); } template <class... Ts> void ps(Ts const&... ts) { Writer<cout, false, true>{}.print_with_sep(" ", ts...); } } // namespace IO inline namespace Debug { template <typename... Args> void err(Args... args) { Writer<cerr, true, false>{}.print_with_sep(" | ", args...); } void err_prefix(string func, int line, string args) { cerr << func << ":" << line << " - " << "[" << args << "] = "; } #ifdef LOCAL #define dbg(args...) err_prefix(__FUNCTION__, __LINE__, #args), err(args) #else #define dbg(...) #endif void setIO() { cin.tie(0)->sync_with_stdio(0); cout << fixed << setprecision(12); } } // namespace Debug void YES(bool t = 1) { ps(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { ps(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { ps(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } namespace std { template <class Fun> class y_combinator_result { Fun fun_; public: template <class T> explicit y_combinator_result(T&& fun) : fun_(std::forward<T>(fun)) {} template <class... Args> decltype(auto) operator()(Args&&... args) { return fun_(std::ref(*this), std::forward<Args>(args)...); } }; template <class Fun> decltype(auto) fun(Fun&& fun) { return y_combinator_result<std::decay_t<Fun>>(std::forward<Fun>(fun)); } // usage : fun([&](auto dfs, int u, int p) -> void ... } // namespace std #line 4 "lib/fast-factorize.hpp" using namespace std; #line 2 "lib/rng.hpp" #line 2 "lib/internal-seed.hpp" using namespace std; namespace internal { unsigned long long non_deterministic_seed() { unsigned long long m = chrono::duration_cast<chrono::nanoseconds>( chrono::high_resolution_clock::now().time_since_epoch()) .count(); m ^= 9845834732710364265uLL; m ^= m << 24, m ^= m >> 31, m ^= m << 35; return m; } unsigned long long deterministic_seed() { return 88172645463325252UL; } // 64 bit の seed 値を生成 (手元では seed 固定) // 連続で呼び出すと同じ値が何度も返ってくるので注意 // #define RANDOMIZED_SEED するとシードがランダムになる unsigned long long seed() { #ifdef LOCAL return deterministic_seed(); #else return non_deterministic_seed(); #endif } } // namespace internal #line 4 "lib/rng.hpp" namespace my_rand { using i64 = long long; using u64 = unsigned long long; // [0, 2^64 - 1) u64 rng() { static u64 _x = internal::seed(); return _x ^= _x << 7, _x ^= _x >> 9; } // [l, r] i64 rng(i64 l, i64 r) { assert(l <= r); return l + rng() % u64(r - l + 1); } // [l, r) i64 randint(i64 l, i64 r) { assert(l < r); return l + rng() % u64(r - l); } // choose n numbers from [l, r) without overlapping vector<i64> randset(i64 l, i64 r, i64 n) { assert(l <= r && n <= r - l); unordered_set<i64> s; for (i64 i = n; i; --i) { i64 m = randint(l, r + 1 - i); if (s.find(m) != s.end()) m = r - i; s.insert(m); } vector<i64> ret; for (auto& x : s) ret.push_back(x); sort(begin(ret), end(ret)); return ret; } // [0.0, 1.0) double rnd() { return rng() * 5.42101086242752217004e-20; } // [l, r) double rnd(double l, double r) { assert(l < r); return l + rnd() * (r - l); } template <typename T> void randshf(vector<T>& v) { int n = v.size(); for (int i = 1; i < n; i++) swap(v[i], v[randint(0, i + 1)]); } } // namespace my_rand using my_rand::randint; using my_rand::randset; using my_rand::randshf; using my_rand::rnd; using my_rand::rng; #line 2 "lib/miller-rabin.hpp" using namespace std; #line 2 "lib/arbitrary-montgomery-modint.hpp" using namespace std; template <typename Int, typename UInt, typename Long, typename ULong, int32_t id> struct ArbitraryLazyMontgomeryModIntBase { using mint = ArbitraryLazyMontgomeryModIntBase; inline static UInt mod; inline static UInt r; inline static UInt n2; static constexpr int32_t bit_length = sizeof(UInt) * 8; static UInt get_r() { UInt ret = mod; while (mod * ret != 1) ret *= UInt(2) - mod * ret; return ret; } static void set_mod(UInt m) { assert(m < (UInt(1u) << (bit_length - 2))); assert((m & 1) == 1); mod = m, n2 = -ULong(m) % m, r = get_r(); } UInt a; ArbitraryLazyMontgomeryModIntBase() : a(0) {} ArbitraryLazyMontgomeryModIntBase(const Long& b) : a(reduce(ULong(b % mod + mod) * n2)){}; static UInt reduce(const ULong& b) { return (b + ULong(UInt(b) * UInt(-r)) * mod) >> bit_length; } mint& operator+=(const mint& b) { if (Int(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } mint& operator-=(const mint& b) { if (Int(a -= b.a) < 0) a += 2 * mod; return *this; } mint& operator*=(const mint& b) { a = reduce(ULong(a) * b.a); return *this; } mint& operator/=(const mint& b) { *this *= b.inverse(); return *this; } mint operator+(const mint& b) const { return mint(*this) += b; } mint operator-(const mint& b) const { return mint(*this) -= b; } mint operator*(const mint& b) const { return mint(*this) *= b; } mint operator/(const mint& b) const { return mint(*this) /= b; } bool operator==(const mint& b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } bool operator!=(const mint& b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } mint operator-() const { return mint(0) - mint(*this); } mint operator+() const { return mint(*this); } mint pow(ULong n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul, n >>= 1; } return ret; } friend ostream& operator<<(ostream& os, const mint& b) { return os << b.get(); } friend istream& operator>>(istream& is, mint& b) { Long t; is >> t; b = ArbitraryLazyMontgomeryModIntBase(t); return (is); } mint inverse() const { Int x = get(), y = get_mod(), u = 1, v = 0; while (y > 0) { Int t = x / y; swap(x -= t * y, y); swap(u -= t * v, v); } return mint{u}; } UInt get() const { UInt ret = reduce(a); return ret >= mod ? ret - mod : ret; } static UInt get_mod() { return mod; } }; // id に適当な乱数を割り当てて使う template <int32_t id> using ArbitraryLazyMontgomeryModInt = ArbitraryLazyMontgomeryModIntBase<int32_t, uint32_t, long long, unsigned long long, id>; template <int32_t id> using ArbitraryLazyMontgomeryModInt64bit = ArbitraryLazyMontgomeryModIntBase<long long, unsigned long long, __int128_t, __uint128_t, id>; #line 1 "lib/internal-type-traits.hpp" #include <type_traits> using namespace std; namespace internal { template <typename T> using is_broadly_integral = typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> || is_same_v<T, __uint128_t>, true_type, false_type>::type; template <typename T> using is_broadly_signed = typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>, true_type, false_type>::type; template <typename T> using is_broadly_unsigned = typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>, true_type, false_type>::type; #define ENABLE_VALUE(x) \ template <typename T> constexpr bool x##_v = x<T>::value; ENABLE_VALUE(is_broadly_integral); ENABLE_VALUE(is_broadly_signed); ENABLE_VALUE(is_broadly_unsigned); #undef ENABLE_VALUE #define ENABLE_HAS_TYPE(var) \ template <class, class = void> struct has_##var : false_type {}; \ template <class T> \ struct has_##var<T, void_t<typename T::var>> : true_type {}; \ template <class T> constexpr auto has_##var##_v = has_##var<T>::value; #define ENABLE_HAS_VAR(var) \ template <class, class = void> struct has_##var : false_type {}; \ template <class T> \ struct has_##var<T, void_t<decltype(T::var)>> : true_type {}; \ template <class T> constexpr auto has_##var##_v = has_##var<T>::value; } // namespace internal #line 2 "lib/internal-math.hpp" namespace internal { #line 6 "lib/internal-math.hpp" using namespace std; // a mod p template <typename T> T safe_mod(T a, T p) { a %= p; if constexpr (is_broadly_signed_v<T>) { if (a < 0) a += p; } return a; } // 返り値:pair(g, x) // s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g template <typename T> pair<T, T> inv_gcd(T a, T p) { static_assert(is_broadly_signed_v<T>); a = safe_mod(a, p); if (a == 0) return {p, 0}; T b = p, x = 1, y = 0; while (a != 0) { T q = b / a; swap(a, b %= a); swap(x, y -= q * x); } if (y < 0) y += p / b; return {b, y}; } // 返り値 : a^{-1} mod p // gcd(a, p) != 1 が必要 template <typename T> T inv(T a, T p) { static_assert(is_broadly_signed_v<T>); a = safe_mod(a, p); T b = p, x = 1, y = 0; while (a != 0) { T q = b / a; swap(a, b %= a); swap(x, y -= q * x); } assert(b == 1); return y < 0 ? y + p : y; } // T : 底の型 // U : T*T がオーバーフローしない かつ 指数の型 template <typename T, typename U> T modpow(T a, U n, T p) { a = safe_mod(a, p); T ret = 1 % p; while (n != 0) { if (n % 2 == 1) ret = U(ret) * a % p; a = U(a) * a % p; n /= 2; } return ret; } // 返り値 : pair(rem, mod) // 解なしのときは {0, 0} を返す template <typename T> pair<T, T> crt(const vector<T>& r, const vector<T>& m) { static_assert(is_broadly_signed_v<T>); assert(r.size() == m.size()); int n = (int)(r.size()); T r0 = 0, m0 = 1; for (int i = 0; i < n; i++) { assert(1 <= m[i]); T r1 = safe_mod(r[i], m[i]), m1 = m[i]; if (m0 < m1) swap(r0, r1), swap(m0, m1); if (m0 % m1 == 0) { if (r0 % m1 != r1) return {0, 0}; continue; } auto [g, im] = inv_gcd(m0, m1); T u1 = m1 / g; if ((r1 - r0) % g) return {0, 0}; T x = (r1 - r0) / g % u1 * im % u1; r0 += x * m0; m0 *= u1; if (r0 < 0) r0 += m0; } return {r0, m0}; } } // namespace internal #line 6 "lib/miller-rabin.hpp" namespace fast_factorize { template <typename T, typename U> bool miller_rabin(const T& n, vector<T> ws) { if (n <= 2) return n == 2; if (n % 2 == 0) return false; T d = n - 1; while (d % 2 == 0) d /= 2; U e = 1, rev = n - 1; for (T w : ws) { if (w % n == 0) continue; T t = d; U y = internal::modpow<T, U>(w, t, n); while (t != n - 1 && y != e && y != rev) y = y * y % n, t *= 2; if (y != rev && t % 2 == 0) return false; } return true; } bool miller_rabin_u64(unsigned long long n) { return miller_rabin<unsigned long long, __uint128_t>( n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022}); } template <typename mint> bool miller_rabin(unsigned long long n, vector<unsigned long long> ws) { if (n <= 2) return n == 2; if (n % 2 == 0) return false; if (mint::get_mod() != n) mint::set_mod(n); unsigned long long d = n - 1; while (~d & 1) d >>= 1; mint e = 1, rev = n - 1; for (unsigned long long w : ws) { if (w % n == 0) continue; unsigned long long t = d; mint y = mint(w).pow(t); while (t != n - 1 && y != e && y != rev) y *= y, t *= 2; if (y != rev && t % 2 == 0) return false; } return true; } bool is_prime(unsigned long long n) { using mint32 = ArbitraryLazyMontgomeryModInt<96229631>; using mint64 = ArbitraryLazyMontgomeryModInt64bit<622196072>; if (n <= 2) return n == 2; if (n % 2 == 0) return false; if (n < (1uLL << 30)) { return miller_rabin<mint32>(n, {2, 7, 61}); } else if (n < (1uLL << 62)) { return miller_rabin<mint64>( n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022}); } else { return miller_rabin_u64(n); } } } // namespace fast_factorize using fast_factorize::is_prime; #line 8 "lib/fast-factorize.hpp" namespace fast_factorize { using u64 = uint64_t; template <typename mint, typename T> T pollard_rho(T n) { if (~n & 1) return 2; if (is_prime(n)) return n; if (mint::get_mod() != n) mint::set_mod(n); mint R, one = 1; auto f = [&](mint x) { return x * x + R; }; auto rnd_ = [&]() { return rng() % (n - 2) + 2; }; while (1) { mint x, y, ys, q = one; R = rnd_(), y = rnd_(); T g = 1; constexpr int m = 128; for (int r = 1; g == 1; r <<= 1) { x = y; for (int i = 0; i < r; ++i) y = f(y); for (int k = 0; g == 1 && k < r; k += m) { ys = y; for (int i = 0; i < m && i < r - k; ++i) q *= x - (y = f(y)); g = gcd(q.get(), n); } } if (g == n) do g = gcd((x - (ys = f(ys))).get(), n); while (g == 1); if (g != n) return g; } exit(1); } using i64 = long long; vector<i64> inner_factorize(u64 n) { using mint32 = ArbitraryLazyMontgomeryModInt<452288976>; using mint64 = ArbitraryLazyMontgomeryModInt64bit<401243123>; if (n <= 1) return {}; u64 p; if (n <= (1LL << 30)) { p = pollard_rho<mint32, uint32_t>(n); } else if (n <= (1LL << 62)) { p = pollard_rho<mint64, uint64_t>(n); } else { exit(1); } if (p == n) return {i64(p)}; auto l = inner_factorize(p); auto r = inner_factorize(n / p); copy(begin(r), end(r), back_inserter(l)); return l; } vector<i64> factorize(u64 n) { auto ret = inner_factorize(n); sort(begin(ret), end(ret)); return ret; } map<i64, i64> factor_count(u64 n) { map<i64, i64> mp; for (auto& x : factorize(n)) mp[x]++; return mp; } vector<i64> divisors(u64 n) { if (n == 0) return {}; vector<pair<i64, i64>> v; for (auto& p : factorize(n)) { if (v.empty() || v.back().first != p) { v.emplace_back(p, 1); } else { v.back().second++; } } vector<i64> ret; auto f = [&](auto rc, int i, i64 x) -> void { if (i == (int)v.size()) { ret.push_back(x); return; } rc(rc, i + 1, x); for (int j = 0; j < v[i].second; j++) rc(rc, i + 1, x *= v[i].first); }; f(f, 0, 1); sort(begin(ret), end(ret)); return ret; } } // namespace fast_factorize using fast_factorize::divisors; using fast_factorize::factor_count; using fast_factorize::factorize; #line 3 "main.cpp" void solve(int tc) { defi(n); Yes(2 * n == Sum(divisors(n))); } signed main() { setIO(); int TC = 1; // re(TC); rep(i, 1, TC + 1) solve(i); }