結果
問題 | No.114 遠い未来 |
ユーザー | 👑 Nachia |
提出日時 | 2024-07-05 00:36:04 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,906 ms / 5,000 ms |
コード長 | 12,531 bytes |
コンパイル時間 | 1,898 ms |
コンパイル使用メモリ | 136,736 KB |
実行使用メモリ | 41,728 KB |
最終ジャッジ日時 | 2024-07-05 00:36:19 |
合計ジャッジ時間 | 14,418 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 23 ms
6,812 KB |
testcase_01 | AC | 652 ms
22,400 KB |
testcase_02 | AC | 1,889 ms
41,600 KB |
testcase_03 | AC | 24 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 6 ms
6,940 KB |
testcase_06 | AC | 1,906 ms
41,600 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 10 ms
6,944 KB |
testcase_10 | AC | 96 ms
8,176 KB |
testcase_11 | AC | 223 ms
12,928 KB |
testcase_12 | AC | 651 ms
22,528 KB |
testcase_13 | AC | 638 ms
22,528 KB |
testcase_14 | AC | 1,874 ms
41,600 KB |
testcase_15 | AC | 1,904 ms
41,728 KB |
testcase_16 | AC | 185 ms
6,944 KB |
testcase_17 | AC | 223 ms
6,940 KB |
testcase_18 | AC | 1,017 ms
6,940 KB |
testcase_19 | AC | 95 ms
6,940 KB |
testcase_20 | AC | 120 ms
6,940 KB |
testcase_21 | AC | 8 ms
6,940 KB |
testcase_22 | AC | 10 ms
6,944 KB |
testcase_23 | AC | 2 ms
6,940 KB |
testcase_24 | AC | 3 ms
6,944 KB |
testcase_25 | AC | 2 ms
6,944 KB |
testcase_26 | AC | 2 ms
6,940 KB |
testcase_27 | AC | 2 ms
6,940 KB |
ソースコード
#include <vector> #include <utility> #include <cassert> #include <algorithm> namespace nachia{ template<class Elem> class CsrArray{ public: struct ListRange{ using iterator = typename std::vector<Elem>::iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } Elem& operator[](int i) const { return begi[i]; } }; struct ConstListRange{ using iterator = typename std::vector<Elem>::const_iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } const Elem& operator[](int i) const { return begi[i]; } }; private: int m_n; std::vector<Elem> m_list; std::vector<int> m_pos; public: CsrArray() : m_n(0), m_list(), m_pos() {} static CsrArray Construct(int n, std::vector<std::pair<int, Elem>> items){ CsrArray res; res.m_n = n; std::vector<int> buf(n+1, 0); for(auto& [u,v] : items){ ++buf[u]; } for(int i=1; i<=n; i++) buf[i] += buf[i-1]; res.m_list.resize(buf[n]); for(int i=(int)items.size()-1; i>=0; i--){ res.m_list[--buf[items[i].first]] = std::move(items[i].second); } res.m_pos = std::move(buf); return res; } static CsrArray FromRaw(std::vector<Elem> list, std::vector<int> pos){ CsrArray res; res.m_n = pos.size() - 1; res.m_list = std::move(list); res.m_pos = std::move(pos); return res; } ListRange operator[](int u) { return ListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; } ConstListRange operator[](int u) const { return ConstListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; } int size() const { return m_n; } int fullSize() const { return (int)m_list.size(); } }; } // namespace nachia namespace nachia{ struct Graph { public: struct Edge{ int from, to; void reverse(){ std::swap(from, to); } int xorval() const { return from ^ to; } }; Graph(int n = 0, bool undirected = false, int m = 0) : m_n(n), m_e(m), m_isUndir(undirected) {} Graph(int n, const std::vector<std::pair<int, int>>& edges, bool undirected = false) : m_n(n), m_isUndir(undirected){ m_e.resize(edges.size()); for(std::size_t i=0; i<edges.size(); i++) m_e[i] = { edges[i].first, edges[i].second }; } template<class Cin> static Graph Input(Cin& cin, int n, bool undirected, int m, bool offset = 0){ Graph res(n, undirected, m); for(int i=0; i<m; i++){ int u, v; cin >> u >> v; res[i].from = u - offset; res[i].to = v - offset; } return res; } int numVertices() const noexcept { return m_n; } int numEdges() const noexcept { return int(m_e.size()); } int addNode() noexcept { return m_n++; } int addEdge(int from, int to){ m_e.push_back({ from, to }); return numEdges() - 1; } Edge& operator[](int ei) noexcept { return m_e[ei]; } const Edge& operator[](int ei) const noexcept { return m_e[ei]; } Edge& at(int ei) { return m_e.at(ei); } const Edge& at(int ei) const { return m_e.at(ei); } auto begin(){ return m_e.begin(); } auto end(){ return m_e.end(); } auto begin() const { return m_e.begin(); } auto end() const { return m_e.end(); } bool isUndirected() const noexcept { return m_isUndir; } void reverseEdges() noexcept { for(auto& e : m_e) e.reverse(); } void contract(int newV, const std::vector<int>& mapping){ assert(numVertices() == int(mapping.size())); for(int i=0; i<numVertices(); i++) assert(0 <= mapping[i] && mapping[i] < newV); for(auto& e : m_e){ e.from = mapping[e.from]; e.to = mapping[e.to]; } m_n = newV; } std::vector<Graph> induce(int num, const std::vector<int>& mapping) const { int n = numVertices(); assert(n == int(mapping.size())); for(int i=0; i<n; i++) assert(-1 <= mapping[i] && mapping[i] < num); std::vector<int> indexV(n), newV(num); for(int i=0; i<n; i++) if(mapping[i] >= 0) indexV[i] = newV[mapping[i]]++; std::vector<Graph> res; res.reserve(num); for(int i=0; i<num; i++) res.emplace_back(newV[i], isUndirected()); for(auto e : m_e) if(mapping[e.from] == mapping[e.to] && mapping[e.to] >= 0) res[mapping[e.to]].addEdge(indexV[e.from], indexV[e.to]); return res; } CsrArray<int> getEdgeIndexArray(bool undirected) const { std::vector<std::pair<int, int>> src; src.reserve(numEdges() * (undirected ? 2 : 1)); for(int i=0; i<numEdges(); i++){ auto e = operator[](i); src.emplace_back(e.from, i); if(undirected) src.emplace_back(e.to, i); } return CsrArray<int>::Construct(numVertices(), src); } CsrArray<int> getEdgeIndexArray() const { return getEdgeIndexArray(isUndirected()); } CsrArray<int> getAdjacencyArray(bool undirected) const { std::vector<std::pair<int, int>> src; src.reserve(numEdges() * (undirected ? 2 : 1)); for(auto e : m_e){ src.emplace_back(e.from, e.to); if(undirected) src.emplace_back(e.to, e.from); } return CsrArray<int>::Construct(numVertices(), src); } CsrArray<int> getAdjacencyArray() const { return getAdjacencyArray(isUndirected()); } private: int m_n; std::vector<Edge> m_e; bool m_isUndir; }; } // namespace nachia namespace nachia { struct DsuFast{ private: std::vector<int> w; public: DsuFast(int n = 0) : w(n, -1) {} int leader(int u){ if(w[u] < 0) return u; return w[u] = leader(w[u]); } int operator[](int u){ return leader(u); } int merge(int u, int v){ u = leader(u); v = leader(v); if(u == v) return u; if(-w[u] < -w[v]) std::swap(u, v); w[u] += w[v]; w[v] = u; return u; } int size(int u){ return -w[leader(u)]; } bool same(int u, int v){ return leader(u) == leader(v); } }; } // namespace nachia #include <queue> namespace nachia{ template<class Weight> struct MultipleTimeDijkstra{ private: template<class T> using nega_queue = std::priority_queue<T, std::vector<T>, std::greater<T>>; struct IncidentEdge{ int to; int e; Weight w; }; std::vector<std::vector<IncidentEdge>> inci; int n; int m; Weight inf; public: MultipleTimeDijkstra( Graph _graph, std::vector<Weight> _weight, Weight _inf ) : n(_graph.numVertices()) , m(_graph.numEdges()) , inf(_inf) { inci.resize(n); for(int e=0; e<m; e++){ auto [u,v] = _graph[e]; inci[u].push_back({ v, e, _weight[e] }); inci[v].push_back({ u, e, _weight[e] }); } } std::vector<int> solve(std::vector<Weight>& w){ nega_queue<std::pair<Weight, int>> que; for(int v=0; v<n; v++) que.push({ w[v], v }); std::vector<int> res(n, -1); while(!que.empty()){ auto [wv,v] = que.top(); que.pop(); if(w[v] < wv) continue; for(auto& evx : inci[v]){ Weight nxd = w[v] + evx.w; int x = evx.to; if(!(nxd < w[x])) continue; w[x] = nxd; que.push({ nxd, x }); res[x] = evx.e; } } return res; } }; struct MinimumSteinerTree{ using Weight = long long; Graph graph; std::vector<int> terminals; std::vector<Weight> weight; Weight inf; std::vector<std::vector<std::pair<int,Weight>>> dp; private: template<class T> using nega_queue = std::priority_queue<T, std::vector<T>, std::greater<T>>; public: MinimumSteinerTree( Graph _graph, std::vector<int> _terminals, std::vector<Weight> _weight, Weight _inf ) : graph(std::move(_graph)) , terminals(std::move(_terminals)) , weight(std::move(_weight)) , inf(_inf) { int n = graph.numVertices(); int m = graph.numEdges(); int k = int(terminals.size()); dp.assign(1<<k, std::vector<std::pair<int,Weight>>(n, std::make_pair(-m-1, inf))); auto zero = Weight(0); for(int i=0; i<n; i++) dp[0][i] = std::make_pair(-n-1, zero); auto dijkstra = MultipleTimeDijkstra<Weight>(graph, weight, inf); auto check = [&](int i, int v, int pre, Weight w){ if(w < dp[i][v].second) dp[i][v] = { pre, w }; }; for(int i=0; i<(1<<k); i++){ { std::vector<Weight> F(n); for(int v=0; v<n; v++) F[v] = dp[i][v].second; auto P = dijkstra.solve(F); for(int v=0; v<n; v++) if(P[v] >= 0) dp[i][v] = { -P[v] - 1, F[v] }; } for(int kk=0; kk<k; kk++) if(!(i&(1<<k))){ auto v = terminals[kk]; check(i|(1<<kk), v, dp[i][v].first, dp[i][v].second); } int j0 = 1; while(j0 <= i) j0 <<= 1; for(int j=(j0-1)&~i; j>0; j=((j-1)&~i)) for(int v=0; v<n; v++){ check(i|j, v, j, dp[i][v].second + dp[j][v].second); } } } Weight minWeight(int mask){ if(mask == 0) return Weight(0); int k=0; while(!(mask & (1<<k))) k++; return dp[mask][terminals[k]].second; } }; template<class Weight> std::vector<int> MinimumSteinerTreeExhaustiveMstMethod( const Graph& graph, const std::vector<Weight>& weight, const std::vector<int>& excluded ){ assert(excluded.size() <= 30); struct Edge { int u; int v; int e; Weight w; }; int n = graph.numVertices(); int m = graph.numEdges(); int k = excluded.size(); std::vector<Edge> edges(m); for(int e=0; e<m; e++){ edges[e] = { graph[e].from, graph[e].to, e, weight[e] }; } std::sort(edges.begin(), edges.end(), [](const Edge& l, const Edge& r){ return l.w < r.w; }); std::vector<int> is_ex(n); std::pair<Weight, int> anslight = { Weight(0), -1 }; for(int f=0; f<(1<<k); f++){ int exc = n-1; for(int i=0; i<k; i++){ int q = (f >> i) & 1; exc -= q; is_ex[excluded[i]] = q; } DsuFast dsu(n); Weight wsum = Weight(0); int cnt = 0; for(auto& e : edges){ if(is_ex[e.u] || is_ex[e.v]) continue; if(dsu.same(e.u, e.v)) continue; dsu.merge(e.u, e.v); cnt++; wsum += e.w; } if(cnt != exc) continue; if(f == 0 || wsum < anslight.first) anslight = { wsum, f }; } std::vector<int> selectedEdges; { int f = anslight.second; for(int i=0; i<k; i++) is_ex[excluded[i]] = ((f >> i) & 1); DsuFast dsu(n); for(auto& e : edges){ if(is_ex[e.u] || is_ex[e.v]) continue; if(dsu.same(e.u, e.v)) continue; dsu.merge(e.u, e.v); selectedEdges.push_back(e.e); } } return selectedEdges; } } // namespace nachia #include <iostream> #include <string> #include <array> #include <cmath> int main(){ using namespace std; ios::sync_with_stdio(false); cin.tie(nullptr); int N, M, T; cin >> N >> M >> T; nachia::Graph graph(N, true); vector<long long> weight; for(int i=0; i<M; i++){ int u,v,c; cin >> u >> v >> c; u--; v--; graph.addEdge(u,v); weight.push_back(c); } vector<int> terminals(T); for(int t=0; t<T; t++){ int a; cin >> a; terminals[t] = a-1; } if(T <= 16){ auto st = nachia::MinimumSteinerTree(graph, terminals, weight, 1001001001001); cout << st.minWeight((1<<T)-1) << endl; } else { vector<int> mask(N); for(int t : terminals) mask[t] = 1; vector<int> ex; for(int i=0; i<N; i++) if(!mask[i]) ex.push_back(i); auto edges = nachia::MinimumSteinerTreeExhaustiveMstMethod(graph, weight, ex); long long ans = 0; for(int e : edges) ans += weight[e]; cout << ans << endl; } return 0; }